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1 Executive Summary

Aerosols are of particular importance as they have a large impact both on air quality, for which
the forecast of particulate matter concentration at surface are used, and on many tropospheric
aspects like effect on radiation reaching the surface and cloud interactions.

In order to improve forecasts made at regional scale over Europe, the assimilation of
observations relevant for aerosols has been studied in the task 3.2 of the CAMEO project.

The first type of instrument that has been selected is the remote sensing of aerosols from the
ground using lidars and ceilometers from the e-profile European network. 4 types of
instruments sensing at different wavelengths provide information on the vertical profile of
aerosols through their attenuated backscatter signal. Such data has been assimilated in the
regional domain of the chemistry-transport model MOCAGE. A cautious preprocessing has
been applied to remove any spurious signal from clouds, rain of noise. The observation errors
have been refined using the so-called Desroziers diagnostic. Improvements have been found
on the quality of the PM10 forecasts compared against in situ EEA measurements. This impact
lasts during the first 36 to 48 h of forecast range.

Although the e-profile observations have a good potential positive impact on forecasts, their
assimilation requires an advanced assimilation system so that it can fit in an operational timing
in near real time.

The other type of observation considered in this study is the space-borne measurements of
Aerosol Optical Depth (AODs). Many satellite platforms embark visible — near infrared
instruments that have the capacity to provide AODs. The VIIRS instrument has been chosen,
as it is onboard operational satellites of the US JPSS series. Three different models
(MOCAGE, MONARCH and SILAM) have evaluated the impact of assimilating VIIRS AODs
over Europe. The conclusions highlight a rather neutral impact on surface particulate matter
forecasts. Contrary to e-profile data, satellite AODs do not provide a detailed vertical
information. Moreover, polar-orbiting satellites only overpass Europe a few hours a day.

More work is needed to gain from satellite AODs. One possible way forward would be to
consider AODs from geostationary instruments like FCI and/or explore AODs from specific
species, like dust AODs (from IRS, e.g.).
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2 Introduction

2.1 Background

Monitoring the composition of the atmosphere is a key objective of the European Union’s
flagship Space programme Copernicus, with the Copernicus Atmosphere Monitoring Service
(CAMS) providing free and continuous data and information on atmospheric composition.

The CAMS Service Evolution (CAMEO) project will enhance the quality and efficiency of the
CAMS service and help CAMS to better respond to policy needs such as air pollution and
greenhouse gases monitoring, the fulfilment of sustainable development goals, and
sustainable and clean energy.

CAMEO will help prepare CAMS for the uptake of forthcoming satellite data, including
Sentinel-4, -5 and 3MI, and advance the aerosol and trace gas data assimilation methods and
inversion capacity of the global and regional CAMS production systems.

CAMEO will develop methods to provide uncertainty information about CAMS products, in
particular for emissions, policy, solar radiation and deposition products in response to
prominent requests from current CAMS users.

CAMEO will contribute to the medium- to long-term evolution of the CAMS production systems
and products.

The transfer of developments from CAMEO into subsequent improvements of CAMS
operational service elements is a main driver for the project and is the main pathway to impact
for CAMEO.

The CAMEO consortium, led by ECMWF, the entity entrusted to operate CAMS, includes
several CAMS partners thus allowing CAMEO developments to be carried out directly within
the CAMS production systems and facilitating the transition of CAMEO results to future
upgrades of the CAMS service.

This will maximise the impact and outcomes of CAMEOQ as it can make full use of the existing
CAMS infrastructure for data sharing, data delivery and communication, thus supporting
policymakers, business and citizens with enhanced atmospheric environmental information.

2.2 Scope of this deliverable

2.2.1 Objectives of this deliverable

This deliverable aims at providing a comprehensive overview of the results obtained in both
tasks 3.2.1 and 3.2.2 of the workpackage 3 of CAMEO

2.2.2 Work performed in this deliverable

In this deliverable the work as planned in the Description of Action (WP3, task 3.2) was
performed :

» Task 3.2.1: Improve the vertical description of aerosols. The characterisation of aerosols’
vertical profiles is still hardly seen from satellites, except for spaceborne lidars. The E-profile
programme of Eumetnet provides backscatter profiles from ground-based lidars and
ceilometers with a good density over Europe (over land surfaces). We propose to review the
various sensors available in the E-profile network and select which ones should be assimilated
first. Then the preprocessing of the data will be examined to decide how to aggregate them
before assimilation. Finally, assimilation trials will be conducted.
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» Task3.2.2 Potential benefits of satellite AOD assimilation. In addition to ground-based data,
satellite AOD measurements (total) will be assimilated to improve coverage over oceans,
using the data from VIIRS.

2.2.3 Deviations and counter measures

No deviations have been encountered.

2.2.4 CAMEO Project Partners:

ECMWF EUROPEAN CENTRE FOR MEDIUM-RANGE WEATHER
FORECASTS

Met Norway METEOROLOGISK INSTITUTT

BSC BARCELONA SUPERCOMPUTING CENTER-CENTRO
NACIONAL DE SUPERCOMPUTACION

KNMI KONINKLIJK NEDERLANDS METEOROLOGISCH INSTITUUT-
KNMi

SMHI SVERIGES METEOROLOGISKA OCH HYDROLOGISKA
INSTITUT

BIRA-IASB INSTITUT ROYAL D'AERONOMIE SPATIALEDE
BELGIQUE

HYGEOS HYGEOS SARL

FMI ILMATIETEEN LAITOS

DLR DEUTSCHES ZENTRUM FUR LUFT - UND RAUMFAHRT EV

ARMINES ASSOCIATION POUR LA RECHERCHE ET LE
DEVELOPPEMENT DES METHODES ET PROCESSUS
INDUSTRIELS

CNRS CENTRE NATIONAL DE LA RECHERCHE SCIENTIFIQUE
CNRS

GRASP-SAS GENERALIZED RETRIEVAL OF ATMOSPHERE AND
SURFACE PROPERTIES EN ABREGE GRASP

Cu UNIVERZITA KARLOVA

CEA COMMISSARIAT A L ENERGIE ATOMIQUE ET AUX
ENERGIES ALTERNATIVES

MF METEO-FRANCE

TNO NEDERLANDSE ORGANISATIE VOOR TOEGEPAST
NATUURWETENSCHAPPELIJK ONDERZOEK TNO

INERIS INSTITUT NATIONAL DE L ENVIRONNEMENT INDUSTRIEL
ET DES RISQUES - INERIS

IOS-PIB INSTYTUT OCHRONY SRODOWISKA - PANSTWOWY
INSTYTUT BADAWCZY

FZJ FORSCHUNGSZENTRUM JULICH GMBH

D3.2 5



CAMEO

AU AARHUS UNIVERSITET

ENEA AGENZIA NAZIONALE PER LE NUOVE TECNOLOGIE,
L'ENERGIA E LO SVILUPPO ECONOMICO SOSTENIBILE
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3 Assimilation of e-profile observations

3.1 Description of the sensors and observations

E-profile is a programme within EUMETNET (https://eumetnet.eu/) which gathers 33
countries. E-profile encompasses activities with 3 means of measurements from the ground:
wind profilers, microwave radiometers and aerosol profilers. We will refer the measurements
of aerosol profilers within this programme as e-profile data hereafter.

At the time of the beginning of the present study, 4 types of instruments were available in the
e-profile network:

e CL31: ceilometers at 900 nm wavelength

e CL51: ceilometers at 900 nm wavelength

e CHM15k: ceilometers at 1064 nm wavelength
e miniMPL: lidars at 532 nm wavelength

The network is described in Figure 1.

EPROFILE STATIONS

I - S CHM15k _|
2Rz ’ sl

o CLSE

e Mini-MPL

Figure 1: Location of e-profile stations for each of the sensor types (miniMPL,
CHM15K, CL31 and CL51.

Within EUMETNET activities, the UK MetOffice collects the data from the whole e-profile
network for aerosols and disseminates the observations in the BUFR format on the WMO
Information System (WIS, formerly known as GTS) in near real time. At Météo-France, this
data flow is stored in real time for operational purposes and is used in this study.

3.2 Preprocessing of the data

The preprocessing consists of a truncation of the altitude range, a cloud mask, precipitation
mask, fog mask, and noise mask. It also includes the vertical interpolation onto MOCAGE’s
grid and a check between the altitude of the station used in MOCAGE and its actual altitude.
Figure 2 recaps the different steps that are fully described below.
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Altitude range. The vertical ranges provided by EUMETNET mainly reflect the instruments’
limitations for cloud-base detection. For the much weaker and, potentially, noisier aerosol
signal, a more conservative vertical range is adopted, depending on the instrument:

e CL31:0-3 km
e CL51:0-5.3 km
¢ CHM15k: 0-7.5 km
e miniMPL: 0.25-15 km
All data outside these ranges are masked out.

Cloud mask. Even though backscattering from clouds is generally stronger than that of aerosol
plumes, the signal strengths of clouds and aerosols can significantly overlap. Therefore,
clouds and aerosols cannot be reliably discriminated based on the strength of the
backscattered power. However, the standard deviation of the attenuated backscatter
coefficient, std(Bat), has been found to be an effective discriminator. More specifically, an
observation of B at altitude z; and time step ¢ is regarded as a cloud, if

std[Bat(t;, z/)] > Threshold,

The threshold is taken to be 10® m~'sr™' for CHM15k instruments, and 1.5 10 m~'sr™" for all
other instruments. Several thresholds have been tested for each instrument to determine the
best value for detecting clouds without masking aerosols.

To verify the validity of our results, we compared observations marked as clouds with satellite
images. We also tested these thresholds in cases of desert dust episodes. Our results showed
that using a threshold that is too low leads to an overestimation of clouds, which can mask
aerosols. On the contrary, a threshold that is too high can result in the retention of a large
number of observations that are in reality clouds.

Precipitation mask. At each time step ti the number of cloud layers is determined up to a
maximum of three layers. If there are cloud-free model layers between two cloudy layers, and
if the altitude difference between the lower and the upper cloud layer is = 35 m, then the upper
layer is counted as a new cloud layer. For each cloud with base altitude z. = 1 km, one
considers the quantity

gatt (ti ; #mins Zmax) = n%(;‘}g [.Satt (ti ) 2)}

Zmin max

The precipitation mask is based on evaluating this quantity by taking the mean over all
altitudes between zuin = z--1 km and zmax = z.-0.5 km.

Base (tis2e — —0.5 Se—6m~lsrt -
If Bars(ti;ze —1km, 2 —0.5km) > 2.5 — 6m ™ sr , then all data at time step # below the cloud base
z. are masked out as precipitation.

Fog mask. Data are masked out as fog if the altitude is below 250 m, and if any of the following
two conditions is satisfied:

Bau(ti, 0,250 m) >2.510° m'sr™

Batt(#:, 0, 250 m) > 2Bau(z, 250 m, 500 m)

Noise mask. Data points are masked out as noise if the following criterion is satisfied:
mean|[Bau(z;, z1)] / std[Baul(z; z1)] < 3.

D3.2 8



CAMEO
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Figure 2: lllustration of the different steps in e-profile data preprocessing before their
assimilation in MOCAGE. 1 Remove clouds. 2 Remove rain. 3 Remove fog. 4 Remove noisy
data. 5 Observation averaging (1 observation per hour and per MOCAGE level).

3.3 Impact of assimilating e-profile observations

3.3.1 Description of MOCAGE assimilation system

MOCAGE is a three-dimensional Chemistry Transport model developed, maintained and
enriched at the Centre National de Recherches Météorologiques (CNRM) at Météo-France
since 2000 (e.g. Guth et al, 2016). It is used for operational and research applications on two
geographical configurations: global and regional. It has notably been used for several studies
aimed at assessing the impact of climate change on atmospheric chemistry, on the transport
of trace gases in the troposphere, as well as on coupled meteorology-atmospheric
composition assimilation for the improvement of Numerical Weather Prediction (NWP). Many
efforts have been made to use MOCAGE to study the exchanges taking place between the
troposphere and the stratosphere using data assimilation (), or to extend the representation of
aerosols in the model simulations thanks to the assimilation of AODs (e.g. EI Amraoui et al,
2022). The model is also a valuable resource for air quality monitoring and forecasting on the
French Prev’Air platform and on Europe within the framework of the CAMS project (Colette et
al, 2025).

The domain used for the CAMS regional service has a horizontal grid of 0.1 degree and 60
vertical levels. The assimilation system is an hourly 3D-Var assimilation over the same
geographical grid as the forecast model.

3.3.2 Observation errors

In the assimilation process, an accurate definition of observation errors is needed. The R
matrix represents the observation error covariances. We assume that there is no horizontal
correlation, so we only represent vertical covariances.

In a first attempt, no vertical correlation is assumed and the standard deviation of the
observation errors is assumed to be a percentage of the actual ATB observation (25% is
used).

In Numerical Weather Prediction (NWP), a common method used to estimate the observation
error covariances is the so-called Desroziers’ diagnostic (Desroziers et al 2005). This method
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relies on both innovations (observation minus first-guess d°) and residuals (observation minus
analysis d°) :

Rdiagnosed = E( d% d°%" ) where E stands for the mathematical expectation.

We have computed such a diagnostic, gathering all observations from each type of sensors.
The results are shown in Figure 3.

sigma_R and sigma_B values Errors correlation between vertical levels

—— sigma_r_CHM15k Mini-MPL CHM15k 1.00
sigma_r_Mini-MPL i noffF~—t—1 11  in

—— sigma_r_CL51 !

—— sigma_r_CL31

—— sigma_b_NMC

== sigma_b_final: 59.15°N/37.85°E

14000

12000

Altitude (m)

8000

s il 4 i B : i
20 325 980 1965 3290 4985 7100
asi

Altitude (m)

6000

uoneRLIo)

2000

Altitude (m)

=t )
107 20 1605 2810 4375

107! 10 10! 2 2
sigma_r (Mm-1.sr-1), sigma_b (ug/m3) Altitude (m) Altitude (m)

Figure 3: Profiles of observation and background error standard deviations (left) and
observation error vertical correlations (right).

3.3.3 Background errors

Similarly to observations errors, the errors related to the background state (aka first-guess of
the assimilation) need to be properly described. We started with a very simple way to represent
the background error standard deviations: a percentage of the model concentration is used.
Again, in this part of the study, the control variable is the total concentration of all aerosols (all
types of aerosols and all sizes; name is TOTAM). A more advanced method is the so-called
NMC method (Parrish and Derber 1992), which uses differences between +36h and +12h
forecasts valid for the same date to sample the forecast error. After several attempts (not
shown here), we decided to use for the background error standard deviations, the (constant)
vertical profile diagnosed from the NMC method to which 25% of the local concentration of
TOTAM is added. The NMC value and an example of the final background error standard
deviations (at a given location and date) are given in Figure 3.

3.3.4 Analysis and forecast scores

An assimilation experiment with the best settings for the observation and background errors
has been run over a 5 months period from January 1% to May 315! 2024. A control experiment
with no assimilation is also run.

First, an evaluation of the quality of the analyses against EEA observations at surface and
AOD observations from AERONET is performed. AERONET is a network of ground-based
sun photometers which measure atmospheric aerosol properties. The time series of
concentration of PM10 at the analysis time is given in Figure 4. Overall, the assimilation of e-
profile data leads to an increase in concentrations of particulate matters at the surface, both
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in PM10 and PM2.5. This helps reducing the negative bias that MOCAGE has on PM10, but
it increases the positive bias already existing for PM2.5. Major events seem to be well
reproduced thanks to the assimilation of e-profile data, mainly for the dust export episode
occurring at the beginning of the evaluation period, in January.

Synthetic scores are given in Table 1. They confirm the behaviour already described. The

correlation is improved for both species. Similarly, the total AOD bias is slightly increased while
the correlation is slightly improved.

20240101-20240531 DO pm10 moy 20240101-20240531 DO pm25 moy
europeA all all

europeA all all

NoAssim

—= AsSImEPROFILE

—= AssimVIRS+EPROFILE
—— Obs-EEA

MNoAssim

— - ASSIMEPROFILE

— - AssimVIRS+EPROFILE
—— Obs-EEA

-

=N
o

Figure 4: Time series from 01.01.2024 to 31.05.2024 for PM10 (left panel) and PM2.5 (right
panel) concentrations at the surface. Observations from EEA are in grey, values from the
control experiment (noAssim) in orange, e-profile assimilation in blue and joint assimilation of
e-profile and VIIRS in green.

PM10 at surface from EEA PM2.5 at surface from EEA AOD from AERONET

ug.m3 ug.m3 unitless
. Assim . Assim . Assim
NoAssim  cppopile NOASSIM  popopie NOASSIM  popoFiLE
Bias 3.0 -0.67 1.1 3.7 0.022 0.03
RMSE 15 14 8.6 9.2 0.086 0.089
Correlation 0.5 0.57 0.52 0.58 0.71 0.73

Table 1: Synthesis of analysis scores against independent observations.

An illustration of how the assimilation of e-profile observations can improve the overall aerosol
total concentration and its vertical distribution is given in Figure 5, which shows the temporal
evolution of the vertical attenuated backscatter at the Klippeneck station (in Baden-
Wirttemberg, Germany) over 15-17 March 2022, which corresponds to a former desert dust
episode over Europe. Even though the assimilation of e-profile data still misses some part of

the event, the vertical distribution and the amplitude of the concentration are well reproduced
in the second part of the event.
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Figure 5: Attenuated backscatter at Klippeneck
from 15 th to 17 th March 2022.

Now, the impact on the quality of the 96h forecasts that are initialised from the analyses
assimilating e-profile has been assessed. Similar features to those for the analyses have been
found. We investigated on how long the effect of the assimilation would last in the forecast. In
Figure 6 the evolution of the bias against EEA observation is given with respect to the forecast
range. Most of the impact is noticed in the early forecast ranges, with a slow decay. During
the second day of forecast, the impact can still be observed but at with a very low amplitude.
Almost no differences are found after +48h forecast range. The findings are similar for the
correlation metric.

Bias 070 Correlation
---- NoAssim:pm10 ===+ NoAssim:pm10
4 —— Assim2:pm10 0.65 - —— Assim2:pm10
~~~~~ NoAssim:pm25 ===+ NOASSIM:pm25
—— Assim2:pm25 —— Assim2:pm25

Bias (ug/m3)
SpearmanR

-4

0 24 48 72 96 x 0 24 48 72 96
Forecast time (hour) Forecast time (hour)

Figure 6: Evolution of scores against EEA observation with respect to the forecast range (bias
on left and correlation on right).
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3.3.5 Conclusion on e-profile assimilation

The data from the e-profile network need a careful preprocessing step to get rid of spurious
and unwanted parts of the measurements and focus on the aerosol signal. They provide a
useful information with vertical distribution, up to different vertical ranges depending on the
actual sensor type. Once this first and crucial step is achieved, a proper description of the
observation errors is needed in the assimilation algorithm (here an hourly 3D-Var) so that the
minimisation process can extract the information on the vertical.

In the frame of the Horizon Europe project which aims at improving the CAMS services, in
particular the regional service in the task, the quality of particulate matter at surface has been
evaluated, both at analysis time and over the full forecast range. Mainly, the assimilation of e-
profile data increases the concentration of aerosols in the atmosphere and also at surface
level. It helps improving the negative bias existing in MOCAGE for PM10, but adds to the
positive bias in PM2.5. The correlation to independent verification data (EEA surface
observations and AODs from AERONET) is improved. These features last up to 36-48h of
forecast range, with a smooth decay. No impact is found after +48h forecast range.
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4 Assimilation of VIIRS AODs

41 MONARCH

The assimilation of VIIRS total AOD was implemented in the MONARCH-DA data assimilation
system, used at BSC for the CAMS regional reanalysis.

Data assimilation of VIIRS AOD had already been implemented in MONARCH-DA and is used
for products such as the Barcelona Dust Regional Forecast (BDRC), but this was limited to
dust particles. This was done through a pre-filtering of the VIIRS observations, selecting only
those with (likely) high dust load, and then performing the assimilation only on the dust tracers
(8 size bins) of MONARCH, ignoring the potential contribution of other aerosol species to the
observations.

We therefore had three specific goals in this task:

¢ Implement and validate the assimilation of total AOD observations, accounting for the eight
aerosol species (distributed in 34 bins) accounted for in MONARCH,;

¢ Implement the capacity to simultaneously assimilate surface and satellite observations;

o Assess the use of these AOD observations for improving the forecasting performance of the
system.

Two sets of experiments were performed, covering two one-month periods: January 2024 and
September 2024. The former was chosen because it covered of a major Saharan dust event,
the second one covers important forest fires in Portugal, as well as two events of long-range
transport of aerosols in Northern Europe. In this report we focus on the experiments covering
September 2024, as the VIIRS coverage in January was rather low.

4.1.1 Observations

We assimilated retrievals from the Level 2 NOAA-20 VIIRS Deep Blue Aerosol 550 nm AOD
product.

The preprocessing was based on the one used for the assimilation of dust AOD at BSC: The
retrievals were pre-averaged on the MONARCH grid, so that there is a maximum of one
observation per grid-cell. The model error is set to 0.01 m and the observational error set
mainly proportionally to 20% of the observed value (higher for very low AOD).

We also assimilated surface PM10 observations from EIONET surface air quality monitoring
networks. The dataset corresponds to the one prepared for the CAMS VRA reanalysis.

4.1.2 MONARCH-DA data assimilation framework

The reanalysis has been produced using the Multiscale Online Nonhydrostatic AtmospheRe
CHemistry model (MONARCH; Pérez et al., 2011; Haustein et al., 2012; Jorba et al., 2012;
Spada et al.,, 2013; Badia et al., 2017; Klose et al., 2021), which consists of advanced
chemistry and aerosol packages coupled online with the Nonhydrostatic Multiscale Model on
the B grid (NMMB; Janjic and Gall, 2012).

In this work, we made use of the setup developed for the CAMS regional air quality reanalysis,
which runs at a 0.2° horizontal resolution, on a rotated latitude-longitude grid, and 24 vertical
levels, and IFS boundary conditions (with chemical boundary conditions from CAMS global).

The data assimilation framework is based on that described in Di Tomaso et al., 2022: the
aerosol concentration fields are optimized using a Local Ensemble Transform Kalman Filter
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(LETKF), from a 12-member forecast ensemble, with perturbations applied to calibration
factors of the dust emission model and to anthropogenic emissions. The DA controls the total
aerosol concentration, in four dimensions (time, lat, lon and model level). The analysis
concentrations for each tracer are then obtained by scaling the forecast tracer concentration
by the ratio of analysis over forecast total concentration.

The LETKF essentially performs a local data assimilation experiment for each model grid cell,
accounting for the influence of observations around each grid cell. The observation influence
is controlled by a Gaussian localization function, controlled by localization coefficients which
scale up the observation uncertainty depending on their distance (in space and time) to the
center of the grid cell. We implemented the possibility to set the localization coefficients per
observation type:

— The vertical localization was set to 3 levels for surface observations (limiting their influence
to the lower levels), but wasn’t used for VIIRS retrievals (since they are sensitive to the
whole atmospheric column);

— The horizontal localization was set to 3 grid cells (approx. 0.6°) for surface data, and to 5
grid cells (approx 1°) for VIIRS;

— The temporal localization was set to 3 hours in both cases.

The settings were chosen rather conservatively, based on the existing setup. It is however
clear from the next section that at least the temporal localization will need to be increased.

4.1.3 Results

4.1.3.1 Joint assimilation of VIIRS AOD and surface PM10 observations

Three “base” experiments were performed for September 2024: SP (reference setup,
assimilating only surface PM10 data); SV (assimilation of VIIRS data only) and SPV (joint
assimilation of surface and VIIRS data). The experiments were performed in an “offline” mode,
where the assimilation at day n is not propagated to day n+7. This allows performing multiple
assimilation experiments sharing the same forecast ensemble. Forecasts with online
assimilation cycle are shown in Section 4.1.3.2

We assessed the capacity of each of the DA experiment to fit both the surface (EIONET) and
satellite (VIIRS) observations. VIIRS observations are assimilated in SV and SPV and PM10
data are assimilated in SP and SPV, so this is not an independent validation, rather a
consistency check.

Daily fit statistics (mean bias, root mean square error (RMSE) and correlation coefficient) are
shown in Figure 7. Overall, the impact of VIIRS data on the fit to surface observations is rather
limited: the huge bias reduction around September 20 doesn’t correspond to a RMSE
reduction in SV, therefore the errors simply compensate each other better in the analysis than
in the forecast. On the other hand, assimilating surface observations only (as is currently done
in the CAMS regional air quality reanalysis) leads to a slight improvement in the fit to VIIRS
data. The SPV experiment achieves comparable fit to VIIRS than SV, and to PM10 data than
SP, therefore there is at least not a significant penalty in performing a joint assimilation.
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Figure 7: Fit statistics against surface (PM10, in mg/m3) and VIIRS AOD observations obtained in the
"offline" experiments (SP, SV and SPV). Some lines were made thicker to make them visible when they
overlap with others.

Two major events are visible in the surface observations in September 2024

o A first peak of PM10 concentration was recorded around September 6, spanning
roughly over Germany and Poland. This event was somewhat well captured by the
MONARCH forecast ensemble, which points to long-range transport from the Eastern
boundary of the domain. The event appears earlier in the VIIRS retrievals, over Ukraine
and Belarus, where there is no PM10 data.

e A second event, around September 19, also spans most of Northern Europe plus the
Western part of the Iberian Peninsula. It follows, in time, major forest fires in Portugal
(https://lwww.copernicus.eu/en/media/image-day-gallery/severe-wildfires-portugal-
september-2024). However the forecast largely underrepresented the fires, and it is
somewhat unclear if there was also some contribution from outside the domain.

Since our focus is rather on the DA than on the model itself, we focused on the first event.
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VIIRS Observations 5-7 September 2024 PM10 Observations, 5-7 Sep 2024
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Figure 8: Observed and modelled AOD (left) and PM10 (right) over Northern and Central Europe on 5-7
September 2024. The model values are shown as departures from the observations. The rectangular area
on each plot is the one used for computing the profiles in Figure 10.
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Figure 9: Analysis departures corresponding of the SP, SV and SPV experiments, corresponding to the
forecast departures shown in Figure 8.

Figure 8 shows the observations corresponding to that event, and the model-data mismatches
on the bottom. Interestingly, the event is barely visible in the AOD retrievals, but very
prominent in the PM10 observations. On the contrary, the forecast underestimated the event
on the ground and underestimated its consequences on AOD. The DA experiments are able
to fit the data, although SPV still somewhat struggles to fit the VIIRS AOD (Figure 9).

We analyzed the vertical profiles from the assimilation experiments in a few interesting
locations. Figure 10 shows vertical profiles of AOD in the rectangular area highlighted in Figure
8. There, the forecast simultaneously underestimated the surface observations, and
overestimated the VIIRS retrievals.
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The SPV experiment manages to accommodate these contrary constraints by adjusting the
vertical profile of aerosols, following roughly the profile obtained in the SP (PM10-only)
assimilation for the lowest levels, and then the profile from the SV (VIIRS-only) one above the
tenth level. The increased aerosol concentrations in the lowest model levels in SVP, compared
to SV, is not compensated by a more significant reduction in higher altitude, resulting in a
higher total column AOD in SPV than in SV (though this is likely not a frequent issue, based
on the domain-wide statistics shown in Figure 7).

Practically, this means that the DA is essentially capable of using PM10 observations to
constrain the surface and VIIRS observations to constrain the free troposphere, the main
benefit from the latter is likely improved forecasting performance, if that updated tropospheric
information can be carried forward to the next day.

. _Total AOD profile, speciated forecast . _Total AOD profiles (forecast and analysis) . _Total AOD increment (vs. mean FC)
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Figure 10: Vertical profiles of AOD over Northern Germany, on September 6, 2024, at 12:00. The left
diagram shows the contribution of each aerosol species to the forecast AOD. The center column compares
the analyses (SP, SV and SVP) to the mean forecast (fc), and the plot on the right shows the difference to
the mean forecast. Grey lines correspond to the twelve forecast members.

4.1.3.2 Impact on forecast performance

We implemented a set of “online” experiments, where the forecast of day n+17 is initialized
based on the atmospheric aerosol concentrations inferred at the analysis of day n. This could
theoretically enable making better use of the information on the free tropospheric aerosol
content provided by VIIRS.

Two experiments were conducted: SV_ol and SPV_ol, corresponding respectively to SV and

SPV, but with forward propagation of the analysis. Fit statistics to VIIRS AOD and EIONET
PM10 data are shown in Figure 11.

The forecasts of the SPV_ol experiment achieves better correlation to PM10 observations
than the “offline” forecast (used in SV, SP and SPV) does. However, the impact of VIIRS
observations is rather negligible: this is due to the fact that the observations are generally
around 12:00 UTC, so their influence on the analyzed concentrations at midnight (which is
used to initialize the next forecast step) is negligible.

The issue is clearly the temporal localization of the VIIRS observations, which is too strong,
and will be adjusted in a re-run of these experiments.

While this propagation of the analysis does appear to have an importance for the quality of
the forecast, the impact on the assimilation at day n+1 is largely negligible, so the “offline”
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approach, used in the previous section and which is much simpler to implement, remains valid
when the forecast is not the main aim (e.g. when conducting reanalysis).
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Figure 11: Fit statistics to VIIRS (left) and surface PM10 (right) observations, for the forecast and
analysis of the SV_ol, SPV_ol and SPV experiments

41.4 Conclusions

We have implemented a data assimilation chain capable of assimilating total AOD retrievals
from VIIRS in MONARCH-DA. The system has shown promising results although an
integration in the current CAMS operational products appears premature.

One of the main issues has been the computational cost of the experiments. This is largely
due to inefficiencies in the I/O of MONARCH-DA, which weren’t major limitations when
performing DA experiments on one (PM10) or eight (dust) MONARCH tracers, but become a
major bottleneck when accounting for all 34 tracers, and with a larger 12-member ensemble,
with more than 40 minutes taken just to read the ensemble for each day of assimilation. There
however is good scope for improvement on that aspect.

VIIRS observations appear to provide limited information on surface PM10 concentrations,
especially when there are already robust constraints from surface monitoring networks.
However, they do constrain the troposphere, which our DA framework should be able to use
to improve the forecast, after further tuning of the data assimilation parameters.
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4.2 SILAM

421 Methods

VIIRS AOD is assimilated using the Ensemble Kalman Filter (EnKF). The ensemble is formed
by perturbing the emissions of all species, the boundary condition for all species, and the time
of the meteorological data. The emissions were perturbed by applying a spatially correlated
emission scaling factor, with a horizontal correlation distance of 300 km and correlation
between neighbouring cells of 0.6. The amplitude of the perturbation was set to 0.5. The
emissions were perturbed only in the horizontal plane, i.e. column-wise. The boundary
condition was perturbed in a similar way, but with the correlation distance being set to 600 km,
the nearest-neighbour correlation to 0.95, and the amplitude to 0.1 (0.02 for ozone). Moreover,
an interspecies correlation was forced by selecting the boundary condition perturbation for
each species to equal the average of a perturbation common to all species and a species-
specific perturbation (as this is computationally much more efficient than computing a
covariance matrix that in addition to the spatial dimensions would also depend on the species
dimension). The standard deviation of the perturbation of the time of the meteorological data
was set to 60 minutes. The ensemble size was selected to be 32. The state vector was set to
be composed of the in-air concentrations of all aerosol species in SILAM, and the following
gases: SO2, NH3, toluene and xylene.

Three separate cases were assimilated: AOD from the Dark Target (DT) algorithm only, AOD
from the Deep Blue (DB) algorithm only, and DT and DB AOD simultaneously. Thinning of the
retrievals was performed by clustering them into 0.25 degree x 0.25 degree cells (same
resolution as in the model), and the median retrieval in each cluster was selected as the
thinned value. The retrieval error for the thinned DB and DT data was set to equal 0.2 times
the value plus a constant error of 0.07. In addition to the assimilation cases, a control run was
performed using the same model setup but without assimilation.

The model domain of the assimilation covered the standard domain of the CAMS regional
forecast, but was set to extend higher up vertically, i.e. to about 170 hPa, and to consist of 18
vertical layers compared to 10 vertical layers in the standard SILAM regional forecast. The
model was run at a 0.25 degree x 0.25 degree resolution using ERA5 meteorological data.
Compared to the IFS forecasts from recent years, ERA5 performs relatively similarly when
used to drive SILAM, although often yielding marginally worse skill scores. The emissions
used were the CAMS regional emissions v. 8.1, together with the other standard emissions of
the SILAM CAMS regional forecast, except that the fire emissions were based on the most
recent iteration of IS4FIRES instead of GFAS.

September 2024 was selected for evaluation of the assimilation setups. A seven day spinup
period, also including assimilation, was performed for the end of August.

4.2.2 Results

The performance of the assimilation was evaluated against the control run for in-situ data
consisting of EEA observations of the standard air-pollutants, and against AERONET level 1.5
AOD. The AERONET AOD was mapped into 550 nm equivalent AOD using the calculation of
an Angstrom exponent (AE), following the same approach as used in the SDS-WAS evaluation
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(except that no screening based on the AE was performed). In addition to the analyses with
assimilation of DB, DT and DB & DT AOD, also forecasts initialized at 00:00 UTC from the DB
& DT analysis are evaluated, separately for the first day of forecast and the second day of
forecast.

The results of the comparison against AERONET AOD are summarized in Table 2. All
assimilation setups significantly improve the RMSE and correlation against AERONET AOD,
although they are not improving the negative bias (and are in fact slightly increasing it). The
base case AOD and the assimilation increments are presented in Figure 12, while Figures 13
and 14 show the same for surface PM2.5 and PM10.

Tables 3 and 4 present evaluation against in situ EEA PM2.5 and PM10, respectively, for
stations used for the operational evaluation of the CAMS regional forecast. As opposed to the
AERONET scores, Tables 3 and 4 present the station averaged RMSE and correlation, as
these scores are more robust than the full RMSE and correlation due to some stations
exhibiting data quality issues.

Table 2: Comparison of the base case and the assimilated cases against AERONET AOD,
together with the first and second days of forecasts initialized from the DB & DT analysis.

mean obs mean mod RMSE corr
base 0.137 0.122 0.081 0.675
DB 0.137 0.117 0.069 0.770
DT 0.137 0.118 0.068 0.776
DB & DT 0.137 0.118 0.066 0.791
first day from DB & DT 0.137 0.118 0.071 0.747
second day from DB & DT 0.137 0.121 0.076 0.713

Table 3: Comparison of the base case and the assimilated cases against EEA PM2.5 for
operational evaluation stations, together with the first and second days of forecasts initialized
from the DB & DT analysis. The values presented are means for individual stations. Where
relevant, the unit is pg/m3.

mean obs mean mod RMSE corr
base 8.30 10.26 6.83 0.716
DB 8.30 9.31 5.48 0.745
DT 8.30 9.43 5.70 0.741
DB & DT 8.30 9.35 5.62 0.742
first day from DB & DT 8.30 9.54 5.91 0.735
second day from DB & DT 8.30 9.94 6.45 0.727
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Table 4: Comparison of the base case and the assimilated cases against EEA PM10 for
operational evaluation stations, together with the first and second days of forecasts initialized
from the DB & DT analysis. The values presented are means for individual stations. Where
relevant, the unit is pg/m3.

mean obs mean mod RMSE corr
base 20.64 15.48 16.29 0.671
DB 20.64 14.41 15.06 0.691
DT 20.64 14.55 15.23 0.687
DB & DT 20.64 14.46 15.23 0.685
first day from DB & DT 20.64 14.85 15.59 0.686
second day from DB & DT 20.64 15.19 16.00 0.679

base DB assim - base DT assim - base DB & DT assim - base
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Figure 12: Base case AOD without assimilation from the SILAM model for September 2024
(left), and the increments for DB, DT, and DB & DT assimilation.
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Figure 13: Base case surface PM2.5 concentration without assimilation from the SILAM model
for September 2024 (left), and the increments for DB, DT, and DB & DT assimilation.
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Figure 14: Base case surface PM10 concentration without assimilation from the SILAM model
for September 2024 (left), and the increments for DB, DT, and DB & DT assimilation.
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4.2.3 Conclusions

Assimilation of VIIRS AOD improved SILAM performance against AERONET AOD and
against surface PM2.5 and PM10. As is evident for Tables 2-4, the improvement was partly
propagated into the forecast initialised from the analysis for the two first days of forecast,
initialised at midnight. The third day of forecast was not evaluated, but extrapolating the decay
of the performance improvement from days 1 and 2 indicates that there would not be any
meaningful improvement after two days of forecast. Adjusting the assimilation parameters
could potentially yield even more improvement. Although generally considered inferior to the
DT algorithm, the DB algorithm showed its strength in the assimilation experiment due to its
ability to obtain AOD retrievals over desert surface.

A similar setup has been previously tested for SILAM with MODIS instead of VIIRS AOD,
yielding similar results for a full year of assimilation. That simulation indicated that assimilating
AQOD has the potential to slightly improve surface ozone as well, as the photolysis reactions
depend on the AOD in SILAM, but in the VIIRS test runs for September only, no meaningful
improvement for surface ozone scores was achieved.
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4.3 MOCAGE
4.3.1 Observation preprocessing

VIIRS AODs are already assimilated in MOCAGE global domain. The data flow used is the
NOAA NRT dissemination with AODs provided at the pixel resolution, for each operational
NOAA satellite embarking VIIRS. In MOCAGE global domain, our preprocessing consists in
super-obbing to the model resolution by averaging all the available VIIRS pixels within each
MOCAGE grid cell. During the present study, we first started with the same approach: super-
obbing VIIRS AODs by averaging the data in each MOCAGE 0.1 x 0.1 model grid cell. After
several attempts (not shown here), we moved towards another way of super-obbing, by using
the 90" percentile value of the VIIRS AODs present in each MOCAGE grid cell. Obviously,
this choice led to higher values used in the assimilation. No further preprocessing is applied.

4.3.2 Observation and background errors
The same background error setting is used as in section 3.3.3 for the e-profile assimilation.

For the observation errors, a Desroziers diagnostic has also been applied. As VIIRS
observations have been used both over land and sea, from both S-NPP and NOAA-20
satellites, we have computed different values of observation error standard deviation for each
satellite and each surface type.

For S-NPP, the standard deviation used is 0.0434 over land and 0.0277 over sea.
For NOAA-20, the standard deviation used is 0.0536 over land and 0.0249 over sea.

Contrary to what is done in IFS-Compo (CAMS global), no bias correction is applied to VIIRS
data in these trials, as it would require much more work to implement a variational bias
correction in MOCAGE; the domain being regional and not global is also a limitation for a bias
correction evaluation and usage.

4.3.3 Impact of assimilating VIIRS only

In this section, we evaluated the impact of assimilating VIIRS only over the month of January
2024. As can be seen in Figure 15 which depicts the time series for concentrations of
particulate matter at surface both in analyses and EEA observations, the impact of assimilating
VIIRS AODs is very modest, mostly neutral. Figure 16 shows how the scores vary according
to the analysis time. For bias, the behaviour is rather consistent over the day. For correlation,
one can notice that the minimum value in the VIIRS assimilation experiment is obtained for
the 12-14 UTC time window, which corresponds to the VIIRS overpass time. This can indicate
that the information provided by VIIRS, integrated over the troposphere, is not consistent with
the information at surface.

Verification of analyses against AERONET AODs also shows a neutral impact (not shown).

We also verified the quality of the subsequent forecasts. Forecast scores over the first
24 hours of forecast range are given in Table 5. As for the analysis, the assimilation of VIIRS
AODs has a neutral impact on forecasts.
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Figure 15: Time series from 01.01.2024 to 31.01.2024 for PM10 (rp. PM2.5) concentrations at
surface (left, rp right panel). Observations from EEA are in grey, values from the control
experiment (noAssim) in orange, VIIRS AOD assimilation in blue.
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Figure 16: Evolution of scores against EEA observation with respect to the analysis time (bias
on left and correlation on right), average scores over the period 01.01.2024 to 31.01.2024.

PM10 at surface from EEA PM2.5 at surface from EEA AOD from AERONET

ug.m3 ug.m3 unitless
. Assim . Assim . .
NoAssim VIIRS NoAssim VIRS NoAssim Assim VIIRS
Bias -5.6 -5.4 -2.3 -2.1 0.025 0.027
RMSE 15 15 11 11 0.05 0.049
Correlation 0.55 0.53 0.55 0.54 0.58 0.58

Table 5: Synthesis of forecast scores against independent observations.
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4.3.4 Impact of joint assimilation of VIIRS and e-profile

In order to evaluate the potential synergy of ground based and space borne remote sensing
of aerosols for the forecast of aerosol concentration at surface, we set up an experiment that
assimilates both e-profile data and VIIRS observations. We use the preprocessing of e-profile
described in section 3.2 and the VIIRS preprocessing described in section 4.3.1. The
background errors are the same as previously used in MOCAGE for this study. The
observation error description for VIIRS and e-profile are those explained in sections 4.3.2 and
3.3.2.

We used here the 5-month period from January to May 2024 to evaluate this setting.

The recap of the evaluation of analyses against independent observations (surface
concentrations of PM from EEA and AODs from AERONET) is given in table 6. The joint
assimilation increases even more the concentrations of PM, both at surface and integrated on
the vertical as AOD. Biases are thus higher for all verification data. The correlation is degraded
when compared to the assimilation of e-profile only, but is still better than the correlation
obtained without any assimilation. Figure 17 shows the values of the scores depending on the
analysis time. As for the assimilation of VIIRS only, a degradation of the scores occurs in
coincidence with the VIIRS instruments overpass of the domain, indicating a discrepancy in
the information extracted from these observations compared to others like e-profile and EEA
surface observations.

PM10 at surface from EEA PM2.5 at surface from EEA AOD from AERONET
ug.m3 ug.m3 unitless
Assim Assim Assim Assim Assim Assim
NoAssim EPROFIL EPROFIL NoAssim EPROFIL EPROFIL NoAssim EPROFIL EPROFIL
E E+VIIRS E E+VIIRS E E+VIIRS
Bias -3.0 -0.67 1.7 1.1 3.7 4.3 0.022 0.03 0.062
RMSE 15 14 16 8.6 9.2 10 0.086 0.089 0.1
Correlation 0.5 0.57 0.51 0.52 0.58 0.54 0.71 0.73 0.72

Table 6: Synthesis of analysis scores against independent observations (table 1 with
additional columns for joint assimilation), from 01.01.2024 to 31.05.2024.
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Figure 17: Evolution of scores against EEA observation with respect to the analysis time (bias
on left and correlation on right), average scores over the period 01.01.2024 to 31.05.2024.
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When the forecasts are evaluated, we can observe a similar behaviour. In Figure 18, the time
series of concentrations of PM at surface are given for the month of January 2024. The quality
of the forecasts initialised from VIIRS+e-profile assimilation and from e-profile only
assimilation are very close to each other, both being better thatn the no assimilation run.

The forecast scores in Table 7 highlight again that biases and RMSE against EEA surface
concentrations are similar for both assimilation runs. Correlations are a bit decreased in the
case of the joint assimilation compared to the assimilation of e-profile only.

20240101-20240131 DO pm10 moy 20240101-20240131 DO pm25 moy
europeA all all europeA all all

2754 MoAssim
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Figure 18: Time series from 01.01.2024 to 31.01.2024 for PM10 (rp. PM2.5) concentrations at
surface (left, rp right panel). Observations from EEA are in grey, forecasts from the control
experiment (noAssim) in orange, e-profile assimilation in blue and joint assimilation of e-
profile and VIIRS in green.

PM10 at surface from EEA PM2.5 at surface from EEA AOD from AERONET
ug.m-3 pg.m3 unitless
Assim Assim Assim Assim Assim Assim
NoAssim EPROFIL EPROFIL NoAssim EPROFIL EPROFIL NoAssim EPROFIL EPROFIL
E E+VIIRS E E+VIIRS E E+VIIRS
Bias -5.6 -4.3 -4.1 -2.3 -0.97 -0.82 0.025 0.029 0.033
RMSE 15 14 14 11 10 10 0.046 0.048 0.052
Correlation 0.55 0.58 0.57 0.55 0.60 0.59 0.62 0.63 0.58

Table 7: Synthesis of first 24h forecast scores against independent observations, from
01.01.2024 to 31.01.2024.

4.3.5 Conclusions on VIIRS assimilation trials

In MOCAGE, the assimilation of VIIRS AODs has proven to bring very few impact on surface
concentration analyses and forecasts. The joint assimilation of VIIRS AODs together with e-
profile data has shown very little impact compared to the assimilation of e-profile only. No
impact is found in the evaluation against AERONET data. This finding is in opposition to what
has been found in the assimilation of VIIRS AODs in the global domain of the MOCAGE model,
where a large improvement is found. The reason may be that a large part of aerosols present
in the regional domain of MOCAGE are coming from the lateral boundary conditions, which
are provided by IFS-Compo (CAMS global), that already has a very good quality.

D3.2 27



CAMEO

5 Conclusion

In this task, we have explored the potential benefits of assimilating ground-based lidars and
ceilometers from the e-profile network and satellite total AODs from VIIRS sensors to improve
the aerosol representation and forecasts of particulate matter at surface.

The assimilation of e-profile data needs a careful preprocessing of the data. No station has to
be discarded a priori, but some consistency check has to be done between the altitude of the
ground represented in the model in which the data are assimilated and the actual altitude of
the station. Then, the data have to undergo further screening for clouds and rain, as well as
noisy data.

Thanks to e-profile data, both the vertical structure of aerosols and their concentrations can
be modified during the assimilation. In our case, it led to an increase of the concentrations in
average, thus to an increase of the total AOD and PM concentrations at surface. These
corrections to the atmospheric concentrations also led to improvements in the analysis and
forecast scores. The improvements last at least 24h and span, to a weaker extent, up to 48h
of forecast range.

A first version of the assimilation of e-profile data in MOCAGE has been transferred to
operations during the CAMEO project. Nevertheless, the readiness of the other models within
the regional ensemble may be much lower.

The assimilation of VIIRS AODs in 3 different models and assimilation settings provided
positive to neutral impact, even if the impact of VIIRS assimilation on surface concentration is
not direct. VIIRS AODs have several advantages, like a wide coverage of the domain, or
various available algorithms (Deep Blue and Dark Target). Further work is needed to refine
the assimilation parameters, like bias correction, for instance.

Joint assimilations of VIIRS AODs have been evaluated, together with surface observations
in MONARCH and with e-profile data in MOCAGE. In both cases, the results are still
exploratory and more work is needed.

In general, the level of maturity of the assimilation of VIIRS AODs in regional models seems
not sufficient to be transferred into operations for the time being. Moreover, the 3 participating
models in this task may not be representative of the level of readiness of the full team of
regional models.

For both instruments, this study paved the way for fruitful innovations in the frame of the
regional service of CAMS. It is important to note that much more work is needed to have all
models reaching the same readiness, first. Then the assimilation parameters and the
observation preprocessing will also need to be refined and investigated to extract the most
from e-profile and VIIRS observations. One limitation of both instruments is the fact they
provide an information on aerosols with no indication on the species. More advanced
information, such as specific dust AOD, could be very useful to enhance the impact of aerosol
observations in the regional systems.
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