
 

 

CAMS Service Evolution  

 

 

 

D3.2 Report on satellite lidar, 
ceilometer and AOD assimilation 

 

 
Due date of deliverable 30 November 2025 

Submission date 23 December 2025 

File Name CAMEO-D3-2-V1.1 

Work Package /Task WP 3 / Task 3.2 

Organisation Responsible of 
Deliverable 

Météo-France 

Author name(s) 
Vincent Guidard, Mickaël Bacles,Nicolas Frebourg, 
Guillaume Monteil, Andreas Uppstu, Jeronimo 
Escribano 

Revision number V1.1 

Status Issued 

Dissemination Level Public 

 
 

 

The CAMEO  project (grant agreement No 101082125) is funded by the 
European Union. 
Views and opinions expressed are however those of the author(s) only 
and do not necessarily reflect those of the European Union or the 
Commission. Neither the European Union nor the granting authority can 
be held responsible for them. 

  



CAMEO  
 

D3.2   2 

1 Executive Summary 

Aerosols are of particular importance as they have a large impact both on air quality, for which 
the forecast of particulate matter concentration at surface are used, and on many tropospheric 
aspects like effect on radiation reaching the surface and cloud interactions.  

In order to improve forecasts made at regional scale over Europe, the assimilation of 
observations relevant for aerosols has been studied in the task 3.2 of the CAMEO project. 

The first type of instrument that has been selected is the remote sensing of aerosols from the 
ground using lidars and ceilometers from the e-profile European network. 4 types of 
instruments sensing at different wavelengths provide information on the vertical profile of 
aerosols through their attenuated backscatter signal. Such data has been assimilated in the 
regional domain of the chemistry-transport model MOCAGE. A cautious preprocessing has 
been applied to remove any spurious signal from clouds, rain of noise. The observation errors 
have been refined using the so-called Desroziers diagnostic. Improvements have been found 
on the quality of the PM10 forecasts compared against in situ EEA measurements. This impact 
lasts during the first 36 to 48 h of forecast range. 

Although the e-profile observations have a good potential positive impact on forecasts, their 
assimilation requires an advanced assimilation system so that it can fit in an operational timing 
in near real time. 

The other type of observation considered in this study is the space-borne measurements of 
Aerosol Optical Depth (AODs). Many satellite platforms embark visible – near infrared 
instruments that have the capacity to provide AODs. The VIIRS instrument has been chosen, 
as it is onboard operational satellites of the US JPSS series. Three different models 
(MOCAGE, MONARCH and SILAM) have evaluated the impact of assimilating VIIRS AODs 
over Europe. The conclusions highlight a rather neutral impact on surface particulate matter 
forecasts. Contrary to e-profile data, satellite AODs do not provide a detailed vertical 
information. Moreover, polar-orbiting satellites only overpass Europe a few hours a day.  

More work is needed to gain from satellite AODs. One possible way forward would be to 
consider AODs from geostationary instruments like FCI and/or explore AODs from specific 
species, like dust AODs (from IRS, e.g.).  
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2 Introduction 

2.1 Background 

Monitoring the composition of the atmosphere is a key objective of the European Union’s 
flagship Space programme Copernicus, with the Copernicus Atmosphere Monitoring Service 
(CAMS) providing free and continuous data and information on atmospheric composition.  

The CAMS Service Evolution (CAMEO) project will enhance the quality and efficiency of the 
CAMS service and help CAMS to better respond to policy needs such as air pollution and 
greenhouse gases monitoring, the fulfilment of sustainable development goals, and 
sustainable and clean energy.  

CAMEO will help prepare CAMS for the uptake of forthcoming satellite data, including 
Sentinel-4, -5 and 3MI, and advance the aerosol and trace gas data assimilation methods and 
inversion capacity of the global and regional CAMS production systems.  

CAMEO will develop methods to provide uncertainty information about CAMS products, in 
particular for emissions, policy, solar radiation and deposition products in response to 
prominent requests from current CAMS users.  

CAMEO will contribute to the medium- to long-term evolution of the CAMS production systems 
and products.  

The transfer of developments from CAMEO into subsequent improvements of CAMS 
operational service elements is a main driver for the project and is the main pathway to impact 
for CAMEO.  

The CAMEO consortium, led by ECMWF, the entity entrusted to operate CAMS, includes 
several CAMS partners thus allowing CAMEO developments to be carried out directly within 
the CAMS production systems and facilitating the transition of CAMEO results to future 
upgrades of the CAMS service.  

This will maximise the impact and outcomes of CAMEO as it can make full use of the existing 
CAMS infrastructure for data sharing, data delivery and communication, thus supporting 
policymakers, business and citizens with enhanced atmospheric environmental information. 

 

2.2 Scope of this deliverable 

 

2.2.1 Objectives of this deliverable 

This deliverable aims at providing a comprehensive overview of the results obtained in both 
tasks 3.2.1 and 3.2.2 of the workpackage 3 of CAMEO  

 

2.2.2 Work performed in this deliverable 

In this deliverable the work as planned in the Description of Action (WP3, task 3.2) was 
performed :  

• Task 3.2.1: Improve the vertical description of aerosols. The characterisation of aerosols’ 
vertical profiles is still hardly seen from satellites, except for spaceborne lidars. The E-profile 
programme of Eumetnet provides backscatter profiles from ground-based lidars and 
ceilometers with a good density over Europe (over land surfaces). We propose to review the 
various sensors available in the E-profile network and select which ones should be assimilated 
first. Then the preprocessing of the data will be examined to decide how to aggregate them 
before assimilation. Finally, assimilation trials will be conducted. 
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• Task3.2.2 Potential benefits of satellite AOD assimilation. In addition to ground-based data, 
satellite AOD measurements (total) will be assimilated to improve coverage over oceans, 
using the data from VIIRS. 

 

2.2.3 Deviations and counter measures 

No deviations have been encountered. 

 

2.2.4 CAMEO Project Partners: 

 

ECMWF EUROPEAN CENTRE FOR MEDIUM-RANGE WEATHER 
FORECASTS 

Met Norway METEOROLOGISK INSTITUTT 

BSC BARCELONA SUPERCOMPUTING CENTER-CENTRO 
NACIONAL DE SUPERCOMPUTACION 

KNMI KONINKLIJK NEDERLANDS METEOROLOGISCH INSTITUUT-
KNMi 

SMHI SVERIGES METEOROLOGISKA OCH HYDROLOGISKA 
INSTITUT 

BIRA-IASB INSTITUT ROYAL D'AERONOMIE SPATIALEDE 

BELGIQUE 

HYGEOS HYGEOS SARL 

FMI ILMATIETEEN LAITOS 

DLR DEUTSCHES ZENTRUM FUR LUFT - UND RAUMFAHRT EV 

ARMINES ASSOCIATION POUR LA RECHERCHE ET LE 
DEVELOPPEMENT DES METHODES ET PROCESSUS 
INDUSTRIELS 

CNRS CENTRE NATIONAL DE LA RECHERCHE SCIENTIFIQUE 
CNRS 

GRASP-SAS GENERALIZED RETRIEVAL OF ATMOSPHERE AND 
SURFACE PROPERTIES EN ABREGE GRASP 

CU UNIVERZITA KARLOVA 

CEA COMMISSARIAT A L ENERGIE ATOMIQUE ET AUX 
ENERGIES ALTERNATIVES 

MF METEO-FRANCE 

TNO NEDERLANDSE ORGANISATIE VOOR TOEGEPAST 
NATUURWETENSCHAPPELIJK ONDERZOEK TNO 

INERIS INSTITUT NATIONAL DE L ENVIRONNEMENT INDUSTRIEL 
ET DES RISQUES - INERIS 

IOS-PIB INSTYTUT OCHRONY SRODOWISKA - PANSTWOWY 
INSTYTUT BADAWCZY 

FZJ FORSCHUNGSZENTRUM JULICH GMBH 
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AU AARHUS UNIVERSITET 

ENEA AGENZIA NAZIONALE PER LE NUOVE TECNOLOGIE, 
L'ENERGIA E LO SVILUPPO ECONOMICO SOSTENIBILE 
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3 Assimilation of e-profile observations 

3.1 Description of the sensors and observations 

E-profile is a programme within EUMETNET (https://eumetnet.eu/) which gathers 33 
countries. E-profile encompasses activities with 3 means of measurements from the ground: 
wind profilers, microwave radiometers and aerosol profilers. We will refer the measurements 
of aerosol profilers within this programme as e-profile data hereafter. 

At the time of the beginning of the present study, 4 types of instruments were available in the 
e-profile network:  

• CL31: ceilometers at 900 nm wavelength 

• CL51: ceilometers at 900 nm wavelength 

• CHM15k: ceilometers at 1064 nm wavelength 

• miniMPL: lidars at 532 nm wavelength 

The network is described in Figure 1. 

 

 

Within EUMETNET activities, the UK MetOffice collects the data from the whole e-profile 
network for aerosols and disseminates the observations in the BUFR format on the WMO 
Information System (WIS, formerly known as GTS) in near real time. At Météo-France, this 
data flow is stored in real time for operational purposes and is used in this study. 

 

3.2 Preprocessing of the data 

The preprocessing consists of a truncation of the altitude range, a cloud mask, precipitation 
mask, fog mask, and noise mask. It also includes the vertical interpolation onto MOCAGE’s 
grid and a check between the altitude of the station used in MOCAGE and its actual altitude. 
Figure 2 recaps the different steps that are fully described below. 

 

 

Figure 1: Location of e-profile stations for each of the sensor types (miniMPL, 
CHM15K, CL31 and CL51. 

https://eumetnet.eu/
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Altitude range. The vertical ranges  provided by EUMETNET mainly reflect the instruments’ 
limitations for cloud-base detection. For the much weaker and, potentially, noisier aerosol 
signal, a more conservative vertical range is adopted, depending on the instrument: 

• CL31: 0–3 km 

• CL51: 0–5.3 km 

• CHM15k: 0–7.5 km 

• miniMPL: 0.25–15 km 

All data outside these ranges are masked out. 

Cloud mask. Even though backscattering from clouds is generally stronger than that of aerosol 
plumes, the signal strengths of clouds and aerosols can significantly overlap. Therefore, 
clouds and aerosols cannot be reliably discriminated based on the strength of the 
backscattered power. However, the standard deviation of the attenuated backscatter 
coefficient, std(βatt), has been found to be an effective discriminator. More specifically, an 
observation of βatt at altitude zl and time step ti is regarded as a cloud, if 

std[βatt(ti, zl)] > Threshold,  

The threshold is taken to be 10-6 m−1sr−1 for CHM15k instruments, and 1.5 10-6 m−1sr−1 for all 
other instruments. Several thresholds have been tested for each instrument to determine the 
best value for detecting clouds without masking aerosols. 

To verify the validity of our results, we compared observations marked as clouds with satellite 
images. We also tested these thresholds in cases of desert dust episodes. Our results showed 
that using a threshold that is too low leads to an overestimation of clouds, which can mask 
aerosols. On the contrary, a threshold that is too high can result in the retention of a large 
number of observations that are in reality clouds. 

Precipitation mask. At each time step ti the number of cloud layers is determined up to a 
maximum of three layers. If there are cloud-free model layers between two cloudy layers, and 
if the altitude difference between the lower and the upper cloud layer is ≥ 35 m, then the upper 
layer is counted as a new cloud layer. For each cloud with base altitude zc ≥ 1 km, one 
considers the quantity 

 

The precipitation mask is based on evaluating this quantity by taking the mean over all 
altitudes between zmin = zc-1 km and zmax = zc-0.5 km. 

If  , then all data at time step ti below the cloud base 
zc are masked out as precipitation. 

Fog mask. Data are masked out as fog if the altitude is below 250 m, and if any of the following 
two conditions is satisfied:  

βatt(ti , 0, 250 m) > 2.5 10−6 m−1sr−1  

βatt(ti , 0, 250 m) > 2βatt(ti , 250 m, 500 m) 

Noise mask. Data points are masked out as noise if the following criterion is satisfied: 

mean[βatt[(ti, zl)] / std[βatt[(ti, zl)] < 3.  
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3.3 Impact of assimilating e-profile observations 

 

3.3.1 Description of MOCAGE assimilation system 

MOCAGE is a three-dimensional Chemistry Transport model developed, maintained and 
enriched at the Centre National de Recherches Météorologiques (CNRM) at Météo-France 
since 2000 (e.g. Guth et al, 2016). It is used for operational and research applications on two 
geographical configurations: global and regional. It has notably been used for several studies 
aimed at assessing the impact of climate change on atmospheric chemistry, on the transport 
of trace gases in the troposphere, as well as on coupled meteorology-atmospheric 
composition assimilation for the improvement of Numerical Weather Prediction (NWP). Many 
efforts have been made to use MOCAGE to study the exchanges taking place between the 
troposphere and the stratosphere using data assimilation (), or to extend the representation of 
aerosols in the model simulations thanks to the assimilation of AODs (e.g. El Amraoui et al, 
2022). The model is also a valuable resource for air quality monitoring and forecasting on the 
French Prev’Air platform and on Europe within the framework of the CAMS project (Colette et 
al, 2025).  

The domain used for the CAMS regional service has a horizontal grid of 0.1 degree and 60 
vertical levels. The assimilation system is an hourly 3D-Var assimilation over the same 
geographical grid as the forecast model.  

 

3.3.2 Observation errors 

In the assimilation process, an accurate definition of observation errors is needed. The R 
matrix represents the observation error covariances. We assume that there is no horizontal 
correlation, so we only represent vertical covariances.  

In a first attempt, no vertical correlation is assumed and the standard deviation of the 
observation errors is assumed to be a percentage of the actual ATB observation (25% is 
used).  

In Numerical Weather Prediction (NWP), a common method used to estimate the observation 
error covariances is the so-called Desroziers’ diagnostic (Desroziers et al 2005). This method 

Figure 2: Illustration of the different steps in e-profile data preprocessing before their 
assimilation in MOCAGE. 1 Remove clouds. 2 Remove rain. 3 Remove fog. 4 Remove noisy 

data. 5 Observation averaging (1 observation per hour and per MOCAGE level). 
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relies on both innovations (observation minus first-guess do
b) and residuals (observation minus 

analysis do
a) : 

Rdiagnosed = E( do
b do

a
T ) where E stands for the mathematical expectation. 

We have computed such a diagnostic, gathering all observations from each type of sensors. 
The results are shown in Figure 3. 

 

 

 

 

3.3.3 Background errors 

Similarly to observations errors, the errors related to the background state (aka first-guess of 
the assimilation) need to be properly described. We started with a very simple way to represent 
the background error standard deviations: a percentage of the model concentration is used. 
Again, in this part of the study, the control variable is the total concentration of all aerosols (all 
types of aerosols and all sizes; name is TOTAM). A more advanced method is the so-called 
NMC method (Parrish and Derber 1992), which uses differences between +36h and +12h 
forecasts valid for the same date to sample the forecast error. After several attempts (not 
shown here), we decided to use for the background error standard deviations, the (constant) 
vertical profile diagnosed from the NMC method to which 25% of the local concentration of 
TOTAM is added. The NMC value and an example of the final background error standard 
deviations (at a given location and date) are given in Figure 3. 

 

3.3.4 Analysis and forecast scores 

 

An assimilation experiment with the best settings for the observation and background errors 
has been run over a 5 months period from January 1st to May 31st 2024. A control experiment 
with no assimilation is also run. 

First, an evaluation of the quality of the analyses against EEA observations at surface and 
AOD observations from AERONET is performed. AERONET is a network of ground-based 
sun photometers which measure atmospheric aerosol properties. The time series of 
concentration of PM10 at the analysis time is given in Figure 4. Overall, the assimilation of e-
profile data leads to an increase in concentrations of particulate matters at the surface, both 

Figure 3: Profiles of observation and background error standard deviations (left) and 
observation error vertical correlations (right). 
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in PM10 and PM2.5. This helps reducing the negative bias that MOCAGE has on PM10, but 
it increases the positive bias already existing for PM2.5. Major events seem to be well 
reproduced thanks to the assimilation of e-profile data, mainly for the dust export episode 
occurring at the beginning of the evaluation period, in January. 

Synthetic scores are given in Table 1. They confirm the behaviour already described. The 
correlation is improved for both species. Similarly, the total AOD bias is slightly increased while 
the correlation is slightly improved. 

  

Figure 4: Time series from 01.01.2024 to 31.05.2024 for PM10 (left panel) and PM2.5 (right 
panel) concentrations at the surface. Observations from EEA are in grey, values from the 

control experiment (noAssim) in orange, e-profile assimilation in blue and joint assimilation of 
e-profile and VIIRS in green. 

 

 

 PM10 at surface from EEA 
µg.m-3 

PM2.5 at surface from EEA 
µg.m-3 

AOD from AERONET 
unitless 

 
NoAssim 

Assim  
EPROFILE 

NoAssim 
Assim  

EPROFILE 
NoAssim 

Assim 
EPROFILE 

Bias -3.0 -0.67 1.1 3.7 0.022 0.03 

RMSE 15 14 8.6 9.2 0.086 0.089 

Correlation 0.5 0.57 0.52 0.58 0.71 0.73 

Table 1: Synthesis of analysis scores against independent observations. 

 

 

An illustration of how the assimilation of e-profile observations can improve the overall aerosol 
total concentration and its vertical distribution is given in Figure 5, which shows the temporal 
evolution of the vertical attenuated backscatter at the Klippeneck station (in Baden-
Württemberg, Germany)  over 15-17 March 2022, which corresponds to a former desert dust 
episode over Europe. Even though the assimilation of e-profile data still misses some part of 
the event, the vertical distribution and the amplitude of the concentration are well reproduced 
in the second part of the event. 
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Now, the impact on the quality of the 96h forecasts that are initialised from the analyses 
assimilating e-profile has been assessed. Similar features to those for the analyses have been 
found. We investigated on how long the effect of the assimilation would last in the forecast. In 
Figure 6 the evolution of the bias against EEA observation is given with respect to the forecast 
range. Most of the impact is noticed in the early forecast ranges, with a slow decay. During 
the second day of forecast, the impact can still be observed but at with a very low amplitude. 
Almost no differences are found after +48h forecast range. The findings are similar for the 
correlation metric. 

 

  

Figure 6: Evolution of scores against EEA observation with respect to the forecast range (bias 
on left and correlation on right). 

 

 

Figure 5: Attenuated backscatter at Klippeneck 
from 15 th to 17 th March 2022. 
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3.3.5 Conclusion on e-profile assimilation 

 

The data from the e-profile network need a careful preprocessing step to get rid of spurious 
and unwanted parts of the measurements and focus on the aerosol signal. They provide a 
useful information with vertical distribution, up to different vertical ranges depending on the 
actual sensor type. Once this first and crucial step is achieved, a proper description of the 
observation errors is needed in the assimilation algorithm (here an hourly 3D-Var) so that the 
minimisation process can extract the information on the vertical.  

In the frame of the Horizon Europe project which aims at improving the CAMS services, in 
particular the regional service in the task, the quality of particulate matter at surface has been 
evaluated, both at analysis time and over the full forecast range. Mainly, the assimilation of e-
profile data increases the concentration of aerosols in the atmosphere and also at surface 
level. It helps improving the negative bias existing in MOCAGE for PM10, but adds to the 
positive bias in PM2.5. The correlation to independent verification data (EEA surface 
observations and AODs from AERONET) is improved. These features last up to 36-48h of 
forecast range, with a smooth decay. No impact is found after +48h forecast range.  
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4 Assimilation of VIIRS AODs 

4.1 MONARCH 

The assimilation of VIIRS total AOD was implemented in the MONARCH-DA data assimilation 
system, used at BSC for the CAMS regional reanalysis. 

Data assimilation of VIIRS AOD had already been implemented in MONARCH-DA and is used 
for products such as the Barcelona Dust Regional Forecast (BDRC), but this was limited to 
dust particles. This was done through a pre-filtering of the VIIRS observations, selecting only 
those with (likely) high dust load, and then performing the assimilation only on the dust tracers 
(8 size bins) of MONARCH, ignoring the potential contribution of other aerosol species to the 
observations. 

We therefore had three specific goals in this task: 

• Implement and validate the assimilation of total AOD observations, accounting for the eight 
aerosol species (distributed in 34 bins) accounted for in MONARCH; 

• Implement the capacity to simultaneously assimilate surface and satellite observations; 

• Assess the use of these AOD observations for improving the forecasting performance of the 
system. 

Two sets of experiments were performed, covering two one-month periods: January 2024 and 
September 2024. The former was chosen because it covered of a major Saharan dust event, 
the second one covers important forest fires in Portugal, as well as two events of long-range 
transport of aerosols in Northern Europe. In this report we focus on the experiments covering 
September 2024, as the VIIRS coverage in January was rather low. 

 

4.1.1 Observations 

We assimilated retrievals from the Level 2 NOAA-20 VIIRS Deep Blue Aerosol 550 nm AOD 
product. 

The preprocessing was based on the one used for the assimilation of dust AOD at BSC: The 
retrievals were pre-averaged on the MONARCH grid, so that there is a maximum of one 
observation per grid-cell. The model error is set to 0.01 m and the observational error set 
mainly proportionally to 20% of the observed value (higher for very low AOD).  

We also assimilated surface PM10 observations from EIONET surface air quality monitoring 
networks. The dataset corresponds to the one prepared for the CAMS VRA reanalysis. 

 

4.1.2 MONARCH-DA data assimilation framework 

The reanalysis has been produced using the Multiscale Online Nonhydrostatic AtmospheRe 
CHemistry model (MONARCH; Pérez et al., 2011; Haustein et al., 2012; Jorba et al., 2012; 
Spada et al., 2013; Badia et al., 2017; Klose et al., 2021), which consists of advanced 
chemistry and aerosol packages coupled online with the Nonhydrostatic Multiscale Model on 
the B grid (NMMB; Janjic and Gall, 2012). 

In this work, we made use of the setup developed for the CAMS regional air quality reanalysis, 
which runs at a 0.2° horizontal resolution, on a rotated latitude-longitude grid, and 24 vertical 
levels, and IFS boundary conditions (with chemical boundary conditions from CAMS global). 

The data assimilation framework is based on that described in Di Tomaso et al., 2022: the 
aerosol concentration fields are optimized using a Local Ensemble Transform Kalman Filter 
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(LETKF), from a 12-member forecast ensemble, with perturbations applied to calibration 
factors of the dust emission model and to anthropogenic emissions. The DA controls the total 
aerosol concentration, in four dimensions (time, lat, lon and model level). The analysis 
concentrations for each tracer are then obtained by scaling the forecast tracer concentration 
by the ratio of analysis over forecast total concentration. 

The LETKF essentially performs a local data assimilation experiment for each model grid cell, 
accounting for the influence of observations around each grid cell. The observation influence 
is controlled by a Gaussian localization function, controlled by localization coefficients which 
scale up the observation uncertainty depending on their distance (in space and time) to the 
center of the grid cell. We implemented the possibility to set the localization coefficients per 
observation type: 

– The vertical localization was set to 3 levels for surface observations (limiting their influence 
to the lower levels), but wasn’t used for VIIRS retrievals (since they are sensitive to the 
whole atmospheric column); 

– The horizontal localization was set to 3 grid cells (approx. 0.6°) for surface data, and to 5 
grid cells (approx 1°) for VIIRS; 

– The temporal localization was set to 3 hours in both cases. 

The settings were chosen rather conservatively, based on the existing setup. It is however 
clear from the next section that at least the temporal localization will need to be increased. 

 

4.1.3 Results 

4.1.3.1 Joint assimilation of VIIRS AOD and surface PM10 observations 

Three “base” experiments were performed for September 2024: SP (reference setup, 
assimilating only surface PM10 data); SV (assimilation of VIIRS data only) and SPV (joint 
assimilation of surface and VIIRS data). The experiments were performed in an “offline” mode, 
where the assimilation at day n is not propagated to day n+1. This allows performing multiple 
assimilation experiments sharing the same forecast ensemble. Forecasts with online 
assimilation cycle are shown in  Section 4.1.3.2 

We assessed the capacity of each of the DA experiment to fit both the surface (EIONET) and 
satellite (VIIRS) observations. VIIRS observations are assimilated in SV and SPV and PM10 
data are assimilated in SP and SPV, so this is not an independent validation, rather a 
consistency check. 

Daily fit statistics (mean bias, root mean square error (RMSE) and correlation coefficient) are 
shown in Figure 7. Overall, the impact of VIIRS data on the fit to surface observations is rather 
limited: the huge bias reduction around September 20 doesn’t correspond to a RMSE 
reduction in SV, therefore the errors simply compensate each other better in the analysis than 
in the forecast. On the other hand, assimilating surface observations only (as is currently done 
in the CAMS regional air quality reanalysis) leads to a slight improvement in the fit to VIIRS 
data. The SPV experiment achieves comparable fit to VIIRS than SV, and to PM10 data than 
SP, therefore there is at least not a significant penalty in performing a joint assimilation. 
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Figure 7: Fit statistics against surface (PM10, in mg/m3) and VIIRS AOD observations obtained in the 

"offline" experiments (SP, SV and SPV). Some lines were made thicker to make them visible when they 

overlap with others. 

Two major events are visible in the surface observations in September 2024: 

• A first peak of PM10 concentration was recorded around September 6, spanning 
roughly over Germany and Poland. This event was somewhat well captured by the 
MONARCH forecast ensemble, which points to long-range transport from the Eastern 
boundary of the domain. The event appears earlier in the VIIRS retrievals, over Ukraine 
and Belarus, where there is no PM10 data. 

• A second event, around September 19, also spans most of Northern Europe plus the 
Western part of the Iberian Peninsula. It follows, in time, major forest fires in Portugal 
(https://www.copernicus.eu/en/media/image-day-gallery/severe-wildfires-portugal-
september-2024). However the forecast largely underrepresented the fires, and it is 
somewhat unclear if there was also some contribution from outside the domain. 

Since our focus is rather on the DA than on the model itself, we focused on the first event.  
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Figure 8: Observed and modelled AOD (left) and PM10 (right) over Northern and Central Europe on 5-7 

September 2024. The model values are shown as departures from the observations. The rectangular area 

on each plot is the one used for computing the profiles in Figure 10. 

 

Figure 9: Analysis departures corresponding of the SP, SV and SPV experiments, corresponding to the 

forecast departures shown in Figure 8. 

Figure 8 shows the observations corresponding to that event, and the model-data mismatches 
on the bottom. Interestingly, the event is barely visible in the AOD retrievals, but very 
prominent in the PM10 observations. On the contrary, the forecast underestimated the event 
on the ground and underestimated its consequences on AOD. The DA experiments are able 
to fit the data, although SPV still somewhat struggles to fit the VIIRS AOD (Figure 9).  

We analyzed the vertical profiles from the assimilation experiments in a few interesting 
locations. Figure 10 shows vertical profiles of AOD in the rectangular area highlighted in Figure 
8. There, the forecast simultaneously underestimated the surface observations, and 
overestimated the VIIRS retrievals. 
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The SPV experiment manages to accommodate these contrary constraints by adjusting the 
vertical profile of aerosols, following roughly the profile obtained in the SP (PM10-only) 
assimilation for the lowest levels, and then the profile from the SV (VIIRS-only) one above the 
tenth level. The increased aerosol concentrations in the lowest model levels in SVP, compared 
to SV, is not compensated by a more significant reduction in higher altitude, resulting in a 
higher total column AOD in SPV than in SV (though this is likely not a frequent issue, based 
on the domain-wide statistics shown in Figure 7). 

Practically, this means that the DA is essentially capable of using PM10 observations to 
constrain the surface and VIIRS observations to constrain the free troposphere, the main 
benefit from the latter is likely improved forecasting performance, if that updated tropospheric 
information can be carried forward to the next day. 

 

Figure 10: Vertical profiles of AOD over Northern Germany, on September 6, 2024, at 12:00. The left 

diagram shows the contribution of each aerosol species to the forecast AOD. The center column compares 

the analyses (SP, SV and SVP) to the mean forecast (fc), and the plot on the right shows the difference to 

the mean forecast. Grey lines correspond to the twelve forecast members.  

 

 

4.1.3.2 Impact on forecast performance 

We implemented a set of “online” experiments, where the forecast of day n+1 is initialized 
based on the atmospheric aerosol concentrations inferred at the analysis of day n. This could 
theoretically enable making better use of the information on the free tropospheric aerosol 
content provided by VIIRS. 

Two experiments were conducted: SV_ol and SPV_ol, corresponding respectively to SV and 
SPV, but with forward propagation of the analysis. Fit statistics to VIIRS AOD and EIONET 
PM10 data are shown in Figure 11.  

The forecasts of the SPV_ol experiment achieves better correlation to PM10 observations 
than the “offline” forecast (used in SV, SP and SPV) does. However, the impact of VIIRS 
observations is rather negligible: this is due to the fact that the observations are generally 
around 12:00 UTC, so their influence on the analyzed concentrations at midnight (which is 
used to initialize the next forecast step) is negligible. 

The issue is clearly the temporal localization of the VIIRS observations, which is too strong, 
and will be adjusted in a re-run of these experiments.  

While this propagation of the analysis does appear to have an importance for the quality of 
the forecast, the impact on the assimilation at day n+1 is largely negligible, so the “offline” 
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approach, used in the previous section and which is much simpler to implement, remains valid 
when the forecast is not the main aim (e.g. when conducting reanalysis). 

 

Figure 11: Fit statistics to VIIRS (left) and surface PM10 (right) observations, for the forecast and 

analysis of the SV_ol, SPV_ol and SPV experiments 

 

4.1.4 Conclusions 

We have implemented a data assimilation chain capable of assimilating total AOD retrievals 
from VIIRS in MONARCH-DA. The system has shown promising results although an 
integration in the current CAMS operational products appears premature. 

One of the main issues has been the computational cost of the experiments. This is largely 
due to inefficiencies in the I/O of MONARCH-DA, which weren’t major limitations when 
performing DA experiments on one (PM10) or eight (dust) MONARCH tracers, but become a 
major bottleneck when accounting for all 34 tracers, and with a larger 12-member ensemble, 
with more than 40 minutes taken just to read the ensemble for each day of assimilation. There 
however is good scope for improvement on that aspect. 

VIIRS observations appear to provide limited information on surface PM10 concentrations, 
especially when there are already robust constraints from surface monitoring networks. 
However, they do constrain the troposphere, which our DA framework should be able to use 
to improve the forecast, after further tuning of the data assimilation parameters.  
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4.2 SILAM 

 

4.2.1 Methods 

VIIRS AOD is assimilated using the Ensemble Kalman Filter (EnKF). The ensemble is formed 

by perturbing the emissions of all species, the boundary condition for all species, and the time 

of the meteorological data. The emissions were perturbed by applying a spatially correlated 

emission scaling factor, with a horizontal correlation distance of 300 km and correlation 

between neighbouring cells of 0.6. The amplitude of the perturbation was set to 0.5. The 

emissions were perturbed only in the horizontal plane, i.e. column-wise. The boundary 

condition was perturbed in a similar way, but with the correlation distance being set to 600 km, 

the nearest-neighbour correlation to 0.95, and the amplitude to 0.1 (0.02 for ozone). Moreover, 

an interspecies correlation was forced by selecting the boundary condition perturbation for 

each species to equal the average of a perturbation common to all species and a species-

specific perturbation (as this is computationally much more efficient than computing a 

covariance matrix that in addition to the spatial dimensions would also depend on the species 

dimension). The standard deviation of the perturbation of the time of the meteorological data 

was set to 60 minutes. The ensemble size was selected to be 32. The state vector was set to 

be composed of the in-air concentrations of all aerosol species in SILAM, and the following 

gases: SO2, NH3, toluene and xylene. 

Three separate cases were assimilated: AOD from the Dark Target (DT) algorithm only, AOD 

from the Deep Blue (DB) algorithm only, and DT and DB AOD simultaneously. Thinning of the 

retrievals was performed by clustering them into 0.25 degree x 0.25 degree cells (same 

resolution as in the model), and the median retrieval in each cluster was selected as the 

thinned value. The retrieval error for the thinned DB and DT data was set to equal 0.2 times 

the value plus a constant error of 0.07. In addition to the assimilation cases, a control run was 

performed using the same model setup but without assimilation. 

The model domain of the assimilation covered the standard domain of the CAMS regional 

forecast, but was set to extend higher up vertically, i.e. to about 170 hPa, and to consist of 18 

vertical layers compared to 10 vertical layers in the standard SILAM regional forecast. The 

model was run at a 0.25 degree x 0.25 degree resolution using ERA5 meteorological data. 

Compared to the IFS forecasts from recent years, ERA5 performs relatively similarly when 

used to drive SILAM, although often yielding marginally worse skill scores. The emissions 

used were the CAMS regional emissions v. 8.1, together with the other standard emissions of 

the SILAM CAMS regional forecast, except that the fire emissions were based on the most 

recent iteration of IS4FIRES instead of GFAS.  

September 2024 was selected for evaluation of the assimilation setups. A seven day spinup 

period, also including assimilation, was performed for the end of August. 

 

4.2.2 Results 

The performance of the assimilation was evaluated against the control run for in-situ data 

consisting of EEA observations of the standard air-pollutants, and against AERONET level 1.5 

AOD. The AERONET AOD was mapped into 550 nm equivalent AOD using the calculation of 

an Angstrom exponent (AE), following the same approach as used in the SDS-WAS evaluation 
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(except that no screening based on the AE was performed). In addition to the analyses with 

assimilation of DB, DT and DB & DT AOD, also forecasts initialized at 00:00 UTC from the DB 

& DT analysis are evaluated, separately for the first day of forecast and the second day of 

forecast. 

The results of the comparison against AERONET AOD are summarized in Table 2. All 

assimilation setups significantly improve the RMSE and correlation against AERONET AOD, 

although they are not improving the negative bias (and are in fact slightly increasing it). The 

base case AOD and the assimilation increments are presented in Figure 12, while Figures 13 

and 14 show the same for surface PM2.5 and PM10. 

Tables 3 and 4 present evaluation against in situ EEA PM2.5 and PM10, respectively, for 

stations used for the operational evaluation of the CAMS regional forecast. As opposed to the 

AERONET scores, Tables 3 and 4 present the station averaged RMSE and correlation, as 

these scores are more robust than the full RMSE and correlation due to some stations 

exhibiting data quality issues. 

 

Table 2: Comparison of the base case and the assimilated cases against AERONET AOD, 
together with the first and second days of forecasts initialized from the DB & DT analysis. 

 mean obs mean mod RMSE corr 

base 0.137 0.122 0.081 0.675 

DB 0.137 0.117 0.069 0.770 

DT 0.137 0.118 0.068 0.776 

DB & DT 0.137 0.118 0.066 0.791 

first day from DB & DT 0.137 0.118 0.071 0.747 

second day from DB & DT 0.137 0.121 0.076 0.713 

 

 

Table 3: Comparison of the base case and the assimilated cases against EEA PM2.5 for 
operational evaluation stations, together with the first and second days of forecasts initialized 

from the DB & DT analysis. The values presented are means for individual stations. Where 
relevant, the unit is μg/m3. 

 mean obs mean mod RMSE corr 

base 8.30 10.26 6.83 0.716 

DB 8.30 9.31 5.48 0.745 

DT 8.30 9.43 5.70 0.741 

DB & DT 8.30 9.35 5.62 0.742 

first day from DB & DT 8.30 9.54 5.91 0.735 

second day from DB & DT 8.30 9.94 6.45 0.727 
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Table 4: Comparison of the base case and the assimilated cases against EEA PM10 for 
operational evaluation stations, together with the first and second days of forecasts initialized 

from the DB & DT analysis. The values presented are means for individual stations. Where 
relevant, the unit is μg/m3. 

 mean obs mean mod RMSE corr 

base 20.64 15.48 16.29 0.671 

DB 20.64 14.41 15.06 0.691 

DT 20.64 14.55 15.23 0.687 

DB & DT 20.64 14.46 15.23 0.685 

first day from DB & DT 20.64 14.85 15.59 0.686 

second day from DB & DT 20.64 15.19 16.00 0.679 

 

 

 

 

 

 

Figure 13: Base case surface PM2.5 concentration without assimilation from the SILAM model 
for September 2024 (left), and the increments for DB, DT, and DB & DT assimilation. 

 

 

Figure 14: Base case surface PM10 concentration without assimilation from the SILAM model 
for September 2024 (left), and the increments for DB, DT, and DB & DT assimilation. 

Figure 12: Base case AOD without assimilation from the SILAM model for September 2024 
(left), and the increments for DB, DT, and DB & DT assimilation. 
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4.2.3 Conclusions 

Assimilation of VIIRS AOD improved SILAM performance against AERONET AOD and 
against surface PM2.5 and PM10. As is evident for Tables 2-4, the improvement was partly 
propagated into the forecast initialised from the analysis for the two first days of forecast, 
initialised at midnight. The third day of forecast was not evaluated, but extrapolating the decay 
of the performance improvement from days 1 and 2 indicates that there would not be any 
meaningful improvement after two days of forecast. Adjusting the assimilation parameters 
could potentially yield even more improvement. Although generally considered inferior to the 
DT algorithm, the DB algorithm showed its strength in the assimilation experiment due to its 
ability to obtain AOD retrievals over desert surface. 

A similar setup has been previously tested for SILAM with MODIS instead of VIIRS AOD, 
yielding similar results for a full year of assimilation. That simulation indicated that assimilating 
AOD has the potential to slightly improve surface ozone as well, as the photolysis reactions 
depend on the AOD in SILAM, but in the VIIRS test runs for September only, no meaningful 
improvement for surface ozone scores was achieved.  
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4.3 MOCAGE 

4.3.1 Observation preprocessing 

VIIRS AODs are already assimilated in MOCAGE global domain. The data flow used is the 
NOAA NRT dissemination with AODs provided at the pixel resolution, for each operational 
NOAA satellite embarking VIIRS. In MOCAGE global domain, our preprocessing consists in 
super-obbing to the model resolution by averaging all the available VIIRS pixels within each 
MOCAGE grid cell. During the present study, we first started with the same approach: super-
obbing VIIRS AODs by averaging the data in each MOCAGE 0.1 x 0.1 model grid cell. After 
several attempts (not shown here), we moved towards another way of super-obbing, by using 
the 90th percentile value of the VIIRS AODs present in each MOCAGE grid cell. Obviously, 
this choice led to higher values used in the assimilation. No further preprocessing is applied. 

 

4.3.2 Observation and background errors 

The same background error setting is used as in section 3.3.3 for the e-profile assimilation. 

For the observation errors, a Desroziers diagnostic has also been applied. As VIIRS 
observations have been used both over land and sea, from both S-NPP and NOAA-20 
satellites, we have computed different values of observation error standard deviation for each 
satellite and each surface type.  

For S-NPP, the standard deviation used is 0.0434 over land and 0.0277 over sea. 

For NOAA-20, the standard deviation used is 0.0536 over land and 0.0249 over sea. 

Contrary to what is done in IFS-Compo (CAMS global), no bias correction is applied to VIIRS 
data in these trials, as it would require much more work to implement a variational bias 
correction in MOCAGE; the domain being regional and not global is also a limitation for a bias 
correction evaluation and usage. 

 

4.3.3 Impact of assimilating VIIRS only 

In this section, we evaluated the impact of assimilating VIIRS only over the month of January 
2024. As can be seen in Figure 15 which depicts the time series for concentrations of 
particulate matter at surface both in analyses and EEA observations, the impact of assimilating 
VIIRS AODs is very modest, mostly neutral. Figure 16 shows how the scores vary according 
to the analysis time. For bias, the behaviour is rather consistent over the day. For correlation, 
one can notice that the minimum value in the VIIRS assimilation experiment is obtained for 
the 12-14 UTC time window, which corresponds to the VIIRS overpass time. This can indicate 
that the information provided by VIIRS, integrated over the troposphere, is not consistent with 
the information at surface. 

Verification of analyses against AERONET AODs also shows a neutral impact (not shown). 

We also verified the quality of the subsequent forecasts. Forecast scores over the first 
24 hours of forecast range are given in Table 5. As for the analysis, the assimilation of VIIRS 
AODs has a neutral impact on forecasts. 
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Figure 15: Time series from 01.01.2024 to 31.01.2024 for PM10 (rp. PM2.5) concentrations at 
surface (left, rp right panel). Observations from EEA are in grey, values from the control 

experiment (noAssim) in orange, VIIRS AOD assimilation in blue. 

 

  

Figure 16: Evolution of scores against EEA observation with respect to the analysis time (bias 
on left and correlation on right), average scores over the period 01.01.2024 to 31.01.2024. 

 

 

 PM10 at surface from EEA 
µg.m-3 

PM2.5 at surface from EEA 
µg.m-3 

AOD from AERONET 
unitless 

 
NoAssim 

Assim  
VIIRS 

NoAssim 
Assim  
VIIRS 

NoAssim Assim VIIRS 

Bias -5.6 -5.4 -2.3 -2.1 0.025 0.027 

RMSE 15 15 11 11 0.05 0.049 

Correlation 0.55 0.53 0.55 0.54 0.58 0.58 

Table 5: Synthesis of forecast scores against independent observations. 
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4.3.4 Impact of joint assimilation of VIIRS and e-profile 

 

In order to evaluate the potential synergy of ground based and space borne remote sensing 
of aerosols for the forecast of aerosol concentration at surface, we set up an experiment that 
assimilates both e-profile data and VIIRS observations. We use the preprocessing of e-profile 
described in section 3.2 and the VIIRS preprocessing described in section 4.3.1. The 
background errors are the same as previously used in MOCAGE for this study. The 
observation error description for VIIRS and e-profile are those explained in sections 4.3.2 and 
3.3.2.  

We used here the 5-month period from January to May 2024 to evaluate this setting. 

The recap of the evaluation of analyses against independent observations (surface 
concentrations of PM from EEA and AODs from AERONET) is given in table 6. The joint 
assimilation increases even more the concentrations of PM, both at surface and integrated on 
the vertical as AOD. Biases are thus higher for all verification data. The correlation is degraded 
when compared to the assimilation of e-profile only, but is still better than the correlation 
obtained without any assimilation. Figure 17 shows the values of the scores depending on the 
analysis time. As for the assimilation of VIIRS only, a degradation of the scores occurs in 
coincidence with the VIIRS instruments overpass of the domain, indicating a discrepancy in 
the information extracted from these observations compared to others like e-profile and EEA 
surface observations. 

 

 PM10 at surface from EEA 
µg.m-3 

PM2.5 at surface from EEA 
µg.m-3 

AOD from AERONET 
unitless 

 
NoAssim 

Assim  
EPROFIL

E 

Assim 
EPROFIL
E+VIIRS 

NoAssim 
Assim  

EPROFIL
E 

Assim 
EPROFIL
E+VIIRS 

NoAssim 
Assim 

EPROFIL
E 

Assim 
EPROFIL
E+VIIRS 

Bias -3.0 -0.67 1.7 1.1 3.7 4.3 0.022 0.03 0.062 

RMSE 15 14 16 8.6 9.2 10 0.086 0.089 0.1 

Correlation 0.5 0.57 0.51 0.52 0.58 0.54 0.71 0.73 0.72 

Table 6: Synthesis of analysis scores against independent observations (table 1 with 
additional columns for joint assimilation), from 01.01.2024 to 31.05.2024. 

 

  

Figure 17: Evolution of scores against EEA observation with respect to the analysis time (bias 
on left and correlation on right), average scores over the period 01.01.2024 to 31.05.2024. 
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When the forecasts are evaluated, we can observe a similar behaviour. In Figure 18, the time 
series of concentrations of PM at surface are given for the month of January 2024. The quality 
of the forecasts initialised from VIIRS+e-profile assimilation and from e-profile only 
assimilation are very close to each other, both being better thatn the no assimilation run. 

The forecast scores in Table 7 highlight again that biases and RMSE against EEA surface 
concentrations are similar for both assimilation runs. Correlations are a bit decreased in the 
case of the joint assimilation compared to the assimilation of e-profile only.  

 

  

Figure 18: Time series from 01.01.2024 to 31.01.2024 for PM10 (rp. PM2.5) concentrations at 
surface (left, rp right panel). Observations from EEA are in grey, forecasts from the control 
experiment (noAssim) in orange, e-profile assimilation in blue and joint assimilation of e-

profile and VIIRS in green. 

 

 PM10 at surface from EEA 
µg.m-3 

PM2.5 at surface from EEA 
µg.m-3 

AOD from AERONET 
unitless 

 
NoAssim 

Assim  
EPROFIL

E 

Assim 
EPROFIL
E+VIIRS 

NoAssim 
Assim  

EPROFIL
E 

Assim 
EPROFIL
E+VIIRS 

NoAssim 
Assim 

EPROFIL
E 

Assim 
EPROFIL
E+VIIRS 

Bias -5.6 -4.3 -4.1 -2.3 -0.97 -0.82 0.025 0.029 0.033 

RMSE 15 14 14 11 10 10 0.046 0.048 0.052 

Correlation 0.55 0.58 0.57 0.55 0.60 0.59 0.62 0.63 0.58 

Table 7: Synthesis of first 24h forecast scores against independent observations, from 
01.01.2024 to 31.01.2024. 

 

4.3.5 Conclusions on VIIRS assimilation trials 

In MOCAGE, the assimilation of VIIRS AODs has proven to bring very few impact on surface 
concentration analyses and forecasts. The joint assimilation of VIIRS AODs together with e-
profile data has shown very little impact compared to the assimilation of e-profile only. No 
impact is found in the evaluation against AERONET data. This finding is in opposition to what 
has been found in the assimilation of VIIRS AODs in the global domain of the MOCAGE model, 
where a large improvement is found. The reason may be that a large part of aerosols present 
in the regional domain of MOCAGE are coming from the lateral boundary conditions, which 
are provided by IFS-Compo (CAMS global), that already has a very good quality.  
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5 Conclusion 

In this task, we have explored the potential benefits of assimilating ground-based lidars and 
ceilometers from the e-profile network and satellite total AODs from VIIRS sensors to improve 
the aerosol representation and forecasts of particulate matter at surface. 

The assimilation of e-profile data needs a careful preprocessing of the data. No station has to 
be discarded a priori, but some consistency check has to be done between the altitude of the 
ground represented in the model in which the data are assimilated and the actual altitude of 
the station. Then, the data have to undergo further screening for clouds and rain, as well as 
noisy data. 

Thanks to e-profile data, both the vertical structure of aerosols and their concentrations can 
be modified during the assimilation. In our case, it led to an increase of the concentrations in 
average, thus to an increase of the total AOD and PM concentrations at surface. These 
corrections to the atmospheric concentrations also led to improvements in the analysis and 
forecast scores. The improvements last at least 24h and span, to a weaker extent, up to 48h 
of forecast range. 

A first version of the assimilation of e-profile data in MOCAGE has been transferred to 
operations during the CAMEO project. Nevertheless, the readiness of the other models within 
the regional ensemble may be much lower.  

 

The assimilation of VIIRS AODs in 3 different models and assimilation settings provided 
positive to neutral impact, even if the impact of VIIRS assimilation on surface concentration is 
not direct. VIIRS AODs have several advantages, like a wide coverage of the domain, or 
various available algorithms (Deep Blue and Dark Target). Further work is needed to refine 
the assimilation parameters, like bias correction, for instance.  

Joint assimilations of VIIRS AODs have been evaluated, together with surface observations 
in MONARCH and with e-profile data in MOCAGE. In both cases, the results are still 
exploratory and more work is needed. 

In general, the level of maturity of the assimilation of VIIRS AODs in regional models seems 
not sufficient to be transferred into operations for the time being. Moreover, the 3 participating 
models in this task may not be representative of the level of readiness of the full team of 
regional models. 

 

For both instruments, this study paved the way for fruitful innovations in the frame of the 
regional service of CAMS. It is important to note that much more work is needed to have all 
models reaching the same readiness, first. Then the assimilation parameters and the 
observation preprocessing will also need to be refined and investigated to extract the most 
from e-profile and VIIRS observations. One limitation of both instruments is the fact they 
provide an information on aerosols with no indication on the species. More advanced 
information, such as specific dust AOD, could be very useful to enhance the impact of aerosol 
observations in the regional systems.  
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