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1 Executive Summary 

In WP2 of the CAMEO project, task 2.4 aims to improve the IFS data assimilation (DA) 
method by incorporating model errors through weak-constraint 4D-Var (WC-4DVar). 
During the first 18 months of CAMEO, WC-4DVar was extended to stratospheric 
ozone (see CAMEO deliverable D2.5). Over the past 18 months, we have i) 
successfully implemented stratospheric humidity analysis in IFS-NWP (to be featured 
in the upcoming operational cycle 50r1), ii) added water vapour as a control variable 
in IFS-COMPO (implemented in cycle 50r1), and assimilated EOS-Aura Microwave 
Limb Sounder (MLS) water vapour data during the Hunga Tonga eruption with 
promising results, and iii) extended WC-4DVar to humidity. An initial assessment of 
the WC-4DVar analysis, including humidity, indicates a positive impact and significant 
operational potential. 
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2 Introduction 

2.1 Background 

Variational data assimilation 4DVar (time plus three spatial dimensions) aims to find a 
model trajectory that best fits observations over an assimilation time window by 
adjusting the initial conditions for forward model integration using a least-squares 
approach. In strong-constraint 4DVar, it is assumed that the forward model perfectly 
represents the evolution of the actual atmosphere, and the best-fitting model trajectory 
is obtained by adjusting only the initial conditions through minimisation of a cost 
function, subject to the model equations as a strong constraint. Conversely, relaxing 
the assumption that the model is perfect leads to the weak-constraint 4DVar (WC-
4DVar) formulation, in which model errors are incorporated as corrections to the time 
derivatives of model variables. The optimal model trajectory is then found by 
simultaneously adjusting both the model error and initial conditions (Fisher et al. 2005, 
Trémolet, 2006, 2007).  

WP2 of the CAMEO project, task 2.4, aims to improve the DA methodology by 
including model errors and dynamical constraints through weak-constraint 4D-Var. 
Building on the proven effectiveness of WC-4DVar in correcting systematic errors in 
temperature, divergence, and vorticity in the stratosphere (Laloyaux et al., 2020a, 
2020b), this document reports on extending the approach to include humidity 
throughout the entire atmospheric column complementing the work carried out in the 
first 18 months of CAMEO to extend WC-4DVar to stratospheric ozone (see CAMEO 
deliverable D2.5). 

2.2 Scope of this deliverable 

2.2.1 Objectives of this deliverable 

This deliverable describes the work carried out under WP2 Task 2.4 in the last 18 
months of the project. 

 

2.2.2 Work performed in this deliverable 

In this deliverable the work as planned in the Description of Action (DoA, WP2 T2.4) 
was performed. 

2.2.3 Deviations and counter measures 

No deviations have been encountered. 

 

2.2.4 CAMEO Project Partners: 

 

ECMWF EUROPEAN CENTRE FOR MEDIUM-RANGE WEATHER 
FORECASTS 

Met Norway METEOROLOGISK INSTITUTT 

BSC BARCELONA SUPERCOMPUTING CENTER-CENTRO 
NACIONAL DE SUPERCOMPUTACION 



CAMEO  
 

D2.6   5 

KNMI KONINKLIJK NEDERLANDS METEOROLOGISCH 
INSTITUUT-KNMi 

SMHI SVERIGES METEOROLOGISKA OCH HYDROLOGISKA 
INSTITUT 

BIRA-IASB INSTITUT ROYAL D'AERONOMIE SPATIALE DE 

BELGIQUE 

HYGEOS HYGEOS SARL 

FMI ILMATIETEEN LAITOS 

DLR DEUTSCHES ZENTRUM FUR LUFT - UND RAUMFAHRT 
EV 

ARMINES ASSOCIATION POUR LA RECHERCHE ET LE 
DEVELOPPEMENT DES METHODES ET PROCESSUS 
INDUSTRIELS 

CNRS CENTRE NATIONAL DE LA RECHERCHE SCIENTIFIQUE 
CNRS 

GRASP-SAS GENERALIZED RETRIEVAL OF ATMOSPHERE AND 
SURFACE PROPERTIES EN ABREGE GRASP 

CU UNIVERZITA KARLOVA 

CEA COMMISSARIAT A L ENERGIE ATOMIQUE ET AUX 
ENERGIES ALTERNATIVES 

MF METEO-FRANCE 

TNO NEDERLANDSE ORGANISATIE VOOR TOEGEPAST 
NATUURWETENSCHAPPELIJK ONDERZOEK TNO 

INERIS INSTITUT NATIONAL DE L ENVIRONNEMENT 
INDUSTRIEL ET DES RISQUES - INERIS 

IOS-PIB INSTYTUT OCHRONY SRODOWISKA - PANSTWOWY 
INSTYTUT BADAWCZY 

FZJ FORSCHUNGSZENTRUM JULICH GMBH 

AU AARHUS UNIVERSITET 

ENEA AGENZIA NAZIONALE PER LE NUOVE TECNOLOGIE, 
L'ENERGIA E LO SVILUPPO ECONOMICO 
SOSTENIBILE 

 

 

  



CAMEO  
 

D2.6   6 

3 4DVAR setup 

3.1 Weak constraint 4DVAR formulation 

Let the vector 𝒙𝑘 be used to represent the state of the atmosphere at the time 𝑘, then 
its evolution accounting for the model error is written as, 

𝒙𝑘+1 = 𝑀(𝒙𝑘) +  𝛈 

Where 𝑀 represents the model and η its error. In this implementation, the model error 
tendencies are assumed to be constant throughout the entire assimilation window. 

The WC-4DVar cost function is given by: 

J(𝒙0, 𝛈) =
1

2
(𝒙0 − 𝒙0

𝑏)𝑇𝐁−1(𝒙0 − 𝒙0
𝑏) +

1

2
∑ (𝐻(𝒙𝑘) − 𝒚𝑘)𝑇𝐑𝑘

−1(𝐻(𝒙𝑘) − 𝒚𝒌)𝑁
𝑘=0 +

1

2
(𝛈 −

𝛈𝑏)𝑇𝐐−1(𝛈 − 𝛈𝑏) (2) 

Where 𝛈𝑏 is the prior estimate of the model error forcing (which are the model error 

tendencies) estimated in the previous WC-4DVar analysis update and Q = E[𝛈𝛈𝑇] is 
the model error covariance matrix, also called the Q matrix, where E represents the 
expected value. Comparing the strong (Figure 1a) and weak constraint (Figure 1b), in 

the formulation of the former, it is assumed that 𝛈 = 𝛈𝑏 = 0. Humidity assimilation 
relies on prior background constraints (i.e., the short-range humidity forecast and its 
error covariance) to control the vertical distribution of humidity information.  
 
(a) 

 

(b) 

 
Figure 1: Strong (a) and weak constraint (b) 4DVar. 

 
 

3.2 ECMWF 4D-Var humidity data assimilation 

As described by Bonavita et al. (2016), the IFS 4DVar assimilation system uses a 
pseudo-relative humidity control variable, defined as specific humidity scaled by the 
background saturation specific humidity. The main advantage of this approach is that 
the error statistics for this control variable are like those of a Gaussian distribution, 
making them more suitable for 4DVar. The latter updates the pseudo-relative humidity 
using various observations, including radiosonde humidity profiles, GNSS-RO bending 
angles, and satellite microwave and infrared sounder radiances. The background error 
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covariances, derived from the Ensemble of Data Assimilations (EDA), provide sharper 
and more localised error estimates. As outlined in Semane and Bonavita (2025), we 
have successfully reintroduced the analysis of stratospheric humidity into the ECMWF 
operational assimilation cycle. This will be a key CAMEO contribution to the upcoming 
IFS Cycle 50r1. While it is not necessary to repeat the complete details presented in 
Semane and Bonavita (2025), some context on the ECMWF humidity analysis 
framework and the motivation for the work in this deliverable is helpful. In the current 
ECMWF Integrated Forecasting System (IFS) data assimilation framework, 
stratospheric humidity is not analysed using observations. Following an early 
implementation in 1999 that allowed humidity increments above the tropopause, 
significant systematic forecast errors were observed. As a result, stratospheric 
humidity analysis increments were disabled, and the humidity field above the 
tropopause was effectively taken from the short-range forecast. This left stratospheric 
moisture largely unconstrained, contributing to known moist and cold biases in lower-
stratospheric forecasts. Re-introducing a stratospheric humidity analysis was 
necessary because new developments, such as ensemble-based background error 
estimation via the Ensemble of Data Assimilations (EDA), higher vertical resolution 
near the tropopause, and more sophisticated control variables, now make it feasible 
to produce physically consistent, observation-informed stratospheric humidity 
increments that reduce systematic forecast errors. Without first restoring this 
capability, it would not have been possible to proceed directly to a weak-constraint 
formulation for humidity, since the infrastructure and error representation needed for 
such a formulation depend on a constrained analysis framework. This preparatory 
work constitutes core CAMEO work.  

In data assimilation, a control variable is a quantity that the system directly adjusts to 
minimise the difference between model forecasts and observations. As part 
of CAMEO, we added CAMS chemical water vapour, the mass of water vapour per 
unit mass of dry air, as a new control variable. The technical implementation required 
integration into the IFS assimilation infrastructure, including representation in the 
background error covariance. This development was essential because, without a 
properly defined control variable for chemical water vapour, it would not have been 
possible to assimilate stratospheric water vapour observations to correct the chemical 
water vapour field. By implementing chemical water vapour as a control variable in IFS 
Cycles 49r2 and 50r1, we enabled the assimilation of EOS-Aura MLS water vapour 
retrievals (Semane et al., 2025). 

Figure 2 illustrates water vapour latitude-pressure cross sections on 15 January 2022 
from BIRA reanalysis1 as described in Errera et al. (2019) (a), CAMS analysis without 
MLS water vapour assimilation (b), and CAMS analysis with MLS water vapour 
assimilation (c). It also shows water vapour latitude-pressure cross sections on 30 
June 2022 from BIRA reanalysis (d), CAMS analysis without MLS assimilation (e), and 
CAMS analysis with MLS assimilation (f). These figures highlight the influence of MLS 
water vapour assimilation before and six months after the Hunga-Tonga eruption. The 
CAMS analysis incorporating MLS water vapour data consistently detects the Hunga-
Tonga signal, aligning closely with the BIRA reanalysis. 
 
 

 
1 BASCOE Reanalysis of Aura-MLS, version 3 (BRAM3) 
Dataset link: https://doi.org/10.18758/8klj122q 

https://doi.org/10.18758/8klj122q
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Figure 2:  Water vapour latitude-pressure cross section on 15 January 2022 from 
BIRA reanalysis (a), CAMS analysis without MLS assimilation (b), and CAMS 
analysis with MLS assimilation (c). Water vapour latitude-pressure cross section on 
30 June 2022 from BIRA reanalysis (d), CAMS analysis without MLS assimilation 
(e), and CAMS analysis with MLS assimilation (f). Those plots are based on an 
evaluation carried out by Marc Op de beeck and Quentin Errera (BIRA-IASB). 

 

3.3 Neural Network derived model error covariance 

Following Bonavita and Laloyaux, 2020, we trained an artificial neural network (ANN) 
to learn accumulated specific humidity model errors over a 12-hour assimilation 
window using analysis increments (Analysis-Background) as predictors and a 
combination of climatological (latitude, longitude, time of day, month) and state-
dependent (columns of first-guess forecast fields) predictors. The training dataset for 
analysis increments and background forecasts is collected over the entire year of 2021 
using a 49r1-like analysis experiment with stratospheric humidity analysis turned on. 
The trained ANN is then employed to generate a representative sample of model 
errors and derive the model error covariance matrix (Q). The latter is horizontally 
localised with a cosine function tapering correlations to zero between 4000 and 6000 
km, thereby removing spurious hemispheric-wide correlations. Vertically, it is localised 
with a quadratic function of the distance from the diagonal to control sampling noise.  
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Figure 3: Diagram representing how ANN is built for the regression. Single columns 
plus metadata (latitude, longitude, time of the day, and month of the year) are extracted 
from the first guess and analysis increment gridded fields to produce the input and the 
target of the neural network (Bonavita and Laloyaux, 2020). 

 

(a) 

 

(b) 

 
Figure 4: (a) Vertical profile of the ANN-derived standard deviation of model error 
tendencies for specific humidity. (b) Vertical correlations of ANN-derived model error 
tendencies for specific humidity. Model level 1 is the top of the atmosphere; model 
level 137 corresponds to the surface. 

Figure 4a displays vertical profiles of the standard deviation of ANN-derived model 
error tendencies. The vertical structure of model-error correlations shown in Figure 4b 
is a vital aspect of the Q matrix, as it influences how model-error information is 
distributed within the atmospheric column. 
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4  WC-4DVar results 

To assess the impact of the weak constraint for specific humidity on the data 
assimilation system, analysis experiments were conducted over 25 days with (WC-
4DVar) and without (CTL) the weak constraint for humidity. 

 

4.1 DA departure statistics 

Analysis and background (i.e., the short-range forecast) departure statistics (shown 
below) from a cycling NWP data assimilation experiment (using the same observations 
as in operations) are essential tools for verifying the effectiveness of any upgrade to 
the data assimilation system. Figure 5 shows a significant reduction in analysis and 
background-observation departures when WC-4DVar is extended to humidity. 

 

 

 

  

  
Figure 5: Relative change in the rms analysis and background fits for humidity 
observations (MHS, MWHS2, SSMI and TEMP-Q). Values lower than 100% indicate 
that the WC4DVar extended to humidity has smaller analysis and background 
departures than the control. Horizontal lines indicate the uncertainly margin. 
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5 Conclusion 

In WP2 of the CAMEO project, task 2.4 aims to improve the DA methodology by 
integrating model errors through weak-constraint 4DVar. Building on the success of 
WC-4DVar in correcting systematic model errors in stratospheric temperature, 
divergence, and vorticity, this report discusses its extension to include humidity. After 
extending WC-4DVar to stratospheric ozone in the first half of CAMEO, we have 
successfully implemented WC-4DVAR for humidity over the past 18 months of the 
CAMEO project. Model bias correction for humidity shows that the adjusted first-guess 
trajectory aligns more closely with the assimilated humidity observations compared to 
a control experiment without WC-4DVAR. As WC-4DVAR for humidity progresses 
towards operational deployment, further verification over an extended period is 
ongoing before potential implementation in the next ECMWF model cycle, CY51R1, 
or possibly in an intermediate cycle between 50r1 and 51r1. 

In IFS-COMPO, water vapour is now implemented as a control variable (Cycles 49r2 
and 50r1), and the assimilation of MLS water vapour has been successfully 
demonstrated in research experiments, providing a strong foundation. However, WC-
4DVar has not yet been extended to chemical water vapour. Additional work is needed 
before applying the same approach used for specific humidity: estimating the model 
error covariance matrix for water vapour based on ANN-derived model error 
tendencies for chemical water vapour. 
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