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1 Executive Summary

In WP2 of the CAMEO project, task 2.4 aims to improve the IFS data assimilation (DA)
method by incorporating model errors through weak-constraint 4D-Var (WC-4DVar).
During the first 18 months of CAMEO, WC-4DVar was extended to stratospheric
ozone (see CAMEO deliverable D2.5). Over the past 18 months, we have i)
successfully implemented stratospheric humidity analysis in IFS-NWP (to be featured
in the upcoming operational cycle 50r1), ii) added water vapour as a control variable
in IFS-COMPO (implemented in cycle 50r1), and assimilated EOS-Aura Microwave
Limb Sounder (MLS) water vapour data during the Hunga Tonga eruption with
promising results, and iii) extended WC-4DVar to humidity. An initial assessment of
the WC-4DVar analysis, including humidity, indicates a positive impact and significant
operational potential.
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2 Introduction

2.1 Background

Variational data assimilation 4DVar (time plus three spatial dimensions) aims to find a
model trajectory that best fits observations over an assimilation time window by
adjusting the initial conditions for forward model integration using a least-squares
approach. In strong-constraint 4DVar, it is assumed that the forward model perfectly
represents the evolution of the actual atmosphere, and the best-fitting model trajectory
is obtained by adjusting only the initial conditions through minimisation of a cost
function, subject to the model equations as a strong constraint. Conversely, relaxing
the assumption that the model is perfect leads to the weak-constraint 4DVar (WC-
4DVar) formulation, in which model errors are incorporated as corrections to the time
derivatives of model variables. The optimal model trajectory is then found by
simultaneously adjusting both the model error and initial conditions (Fisher et al. 2005,
Trémolet, 2006, 2007).

WP2 of the CAMEO project, task 2.4, aims to improve the DA methodology by
including model errors and dynamical constraints through weak-constraint 4D-Var.
Building on the proven effectiveness of WC-4DVar in correcting systematic errors in
temperature, divergence, and vorticity in the stratosphere (Laloyaux et al., 2020a,
2020b), this document reports on extending the approach to include humidity
throughout the entire atmospheric column complementing the work carried out in the
first 18 months of CAMEO to extend WC-4DVar to stratospheric ozone (see CAMEO
deliverable D2.5).

2.2 Scope of this deliverable
2.2.1 Objectives of this deliverable

This deliverable describes the work carried out under WP2 Task 2.4 in the last 18
months of the project.

2.2.2 Work performed in this deliverable

In this deliverable the work as planned in the Description of Action (DoA, WP2 T2.4)
was performed.

2.2.3 Deviations and counter measures
No deviations have been encountered.

2.2.4 CAMEO Project Partners:

ECMWF EUROPEAN CENTRE FOR MEDIUM-RANGE WEATHER
FORECASTS

Met Norway METEOROLOGISK INSTITUTT

BSC BARCELONA SUPERCOMPUTING CENTER-CENTRO
NACIONAL DE SUPERCOMPUTACION
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3 4DVAR setup

3.1 Weak constraint 4DVAR formulation

Let the vector x;, be used to represent the state of the atmosphere at the time k, then
its evolution accounting for the model error is written as,

Xp+1 = M(x) + M

Where M represents the model and n its error. In this implementation, the model error
tendencies are assumed to be constant throughout the entire assimilation window.

The WC-4DVar cost function is given by:

J(xo,m) = %(xo —20)" BN (%o — X0) + %Z’X:O(H(xk) — ¥ R H) — yi) + % (-
1)"Q'm—n") (2)

Where 11? is the prior estimate of the model error forcing (which are the model error
tendencies) estimated in the previous WC-4DVar analysis update and Q = E[nn’] is
the model error covariance matrix, also called the Q matrix, where E represents the
expected value. Comparing the strong (Figure 1a) and weak constraint (Figure 1b), in
the formulation of the former, it is assumed that n = n? = 0. Humidity assimilation
relies on prior background constraints (i.e., the short-range humidity forecast and its
error covariance) to control the vertical distribution of humidity information.

(@) (b)
X Obs O X Obs o
prase | e
Obs Obs trajectory
First-guess « n First-guess
Xy trajectory b o0h trajectory
] —— S
o 0 Obs o
Xq Xa
O Obs 0 Obs
1 1 1
3UTC BUTC 9UTC 12UTC 15UTC Time 3UTC 6UTC 9UTC 12UTC 15UTC Time

Assimilation window

Assimilation window

Figure 1: Strong (a) and weak constraint (b) 4DVar.

3.2 ECMWEF 4D-Var humidity data assimilation

As described by Bonavita et al. (2016), the IFS 4DVar assimilation system uses a
pseudo-relative humidity control variable, defined as specific humidity scaled by the
background saturation specific humidity. The main advantage of this approach is that
the error statistics for this control variable are like those of a Gaussian distribution,
making them more suitable for 4DVar. The latter updates the pseudo-relative humidity
using various observations, including radiosonde humidity profiles, GNSS-RO bending
angles, and satellite microwave and infrared sounder radiances. The background error
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covariances, derived from the Ensemble of Data Assimilations (EDA), provide sharper
and more localised error estimates. As outlined in Semane and Bonavita (2025), we
have successfully reintroduced the analysis of stratospheric humidity into the ECMWF
operational assimilation cycle. This will be a key CAMEO contribution to the upcoming
IFS Cycle 50r1. While it is not necessary to repeat the complete details presented in
Semane and Bonavita (2025), some context on the ECMWF humidity analysis
framework and the motivation for the work in this deliverable is helpful. In the current
ECMWEF Integrated Forecasting System (IFS) data assimilation framework,
stratospheric humidity is not analysed using observations. Following an early
implementation in 1999 that allowed humidity increments above the tropopause,
significant systematic forecast errors were observed. As a result, stratospheric
humidity analysis increments were disabled, and the humidity field above the
tropopause was effectively taken from the short-range forecast. This left stratospheric
moisture largely unconstrained, contributing to known moist and cold biases in lower-
stratospheric forecasts. Re-introducing a stratospheric humidity analysis was
necessary because new developments, such as ensemble-based background error
estimation via the Ensemble of Data Assimilations (EDA), higher vertical resolution
near the tropopause, and more sophisticated control variables, now make it feasible
to produce physically consistent, observation-informed stratospheric humidity
increments that reduce systematic forecast errors. Without first restoring this
capability, it would not have been possible to proceed directly to a weak-constraint
formulation for humidity, since the infrastructure and error representation needed for
such a formulation depend on a constrained analysis framework. This preparatory
work constitutes core CAMEO work.

In data assimilation, a control variable is a quantity that the system directly adjusts to
minimise the difference between model forecasts and observations. As part
of CAMEO, we added CAMS chemical water vapour, the mass of water vapour per
unit mass of dry air, as a new control variable. The technical implementation required
integration into the IFS assimilation infrastructure, including representation in the
background error covariance. This development was essential because, without a
properly defined control variable for chemical water vapour, it would not have been
possible to assimilate stratospheric water vapour observations to correct the chemical
water vapour field. By implementing chemical water vapour as a control variable in IFS
Cycles 49r2 and 50r1, we enabled the assimilation of EOS-Aura MLS water vapour
retrievals (Semane et al., 2025).

Figure 2 illustrates water vapour latitude-pressure cross sections on 15 January 2022
from BIRA reanalysis' as described in Errera et al. (2019) (a), CAMS analysis without
MLS water vapour assimilation (b), and CAMS analysis with MLS water vapour
assimilation (c). It also shows water vapour latitude-pressure cross sections on 30
June 2022 from BIRA reanalysis (d), CAMS analysis without MLS assimilation (e), and
CAMS analysis with MLS assimilation (f). These figures highlight the influence of MLS
water vapour assimilation before and six months after the Hunga-Tonga eruption. The
CAMS analysis incorporating MLS water vapour data consistently detects the Hunga-
Tonga signal, aligning closely with the BIRA reanalysis.

" BASCOE Reanalysis of Aura-MLS, version 3 (BRAM3)
Dataset link: https://doi.org/10.18758/8kl|122q
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Figure 2: Water vapour latitude-pressure cross section on 15 January 2022 from
BIRA reanalysis (a), CAMS analysis without MLS assimilation (b), and CAMS
analysis with MLS assimilation (c). Water vapour latitude-pressure cross section on
30 June 2022 from BIRA reanalysis (d), CAMS analysis without MLS assimilation
(e), and CAMS analysis with MLS assimilation (f). Those plots are based on an
evaluation carried out by Marc Op de beeck and Quentin Errera (BIRA-IASB).

3.3 Neural Network derived model error covariance

Following Bonavita and Laloyaux, 2020, we trained an artificial neural network (ANN)
to learn accumulated specific humidity model errors over a 12-hour assimilation
window using analysis increments (Analysis-Background) as predictors and a
combination of climatological (latitude, longitude, time of day, month) and state-
dependent (columns of first-guess forecast fields) predictors. The training dataset for
analysis increments and background forecasts is collected over the entire year of 2021
using a 49r1-like analysis experiment with stratospheric humidity analysis turned on.
The trained ANN is then employed to generate a representative sample of model
errors and derive the model error covariance matrix (Q). The latter is horizontally
localised with a cosine function tapering correlations to zero between 4000 and 6000
km, thereby removing spurious hemispheric-wide correlations. Vertically, it is localised
with a quadratic function of the distance from the diagonal to control sampling noise.
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Figure 3: Diagram representing how ANN is built for the regression. Single columns
plus metadata (latitude, longitude, time of the day, and month of the year) are extracted
from the first guess and analysis increment gridded fields to produce the input and the
target of the neural network (Bonavita and Laloyaux, 2020).
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Figure 4: (a) Vertical profile of the ANN-derived standard deviation of model error
tendencies for specific humidity. (b) Vertical correlations of ANN-derived model error
tendencies for specific humidity. Model level 1 is the top of the atmosphere; model
level 137 corresponds to the surface.

Figure 4a displays vertical profiles of the standard deviation of ANN-derived model
error tendencies. The vertical structure of model-error correlations shown in Figure 4b
is a vital aspect of the Q matrix, as it influences how model-error information is
distributed within the atmospheric column.

D2.6 9



CAMEO

4 WC-4DVar results

To assess the impact of the weak constraint for specific humidity on the data
assimilation system, analysis experiments were conducted over 25 days with (WC-
4DVar) and without (CTL) the weak constraint for humidity.

4.1 DA departure statistics

Analysis and background (i.e., the short-range forecast) departure statistics (shown
below) from a cycling NWP data assimilation experiment (using the same observations
as in operations) are essential tools for verifying the effectiveness of any upgrade to
the data assimilation system. Figure 5 shows a significant reduction in analysis and
background-observation departures when WC-4DVar is extended to humidity.
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Figure 5: Relative change in the rms analysis and background fits for humidity
observations (MHS, MWHS2, SSMI and TEMP-Q). Values lower than 100% indicate
that the WC4DVar extended to humidity has smaller analysis and background
departures than the control. Horizontal lines indicate the uncertainly margin.
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5 Conclusion

In WP2 of the CAMEO project, task 2.4 aims to improve the DA methodology by
integrating model errors through weak-constraint 4DVar. Building on the success of
WC-4DVar in correcting systematic model errors in stratospheric temperature,
divergence, and vorticity, this report discusses its extension to include humidity. After
extending WC-4DVar to stratospheric ozone in the first half of CAMEO, we have
successfully implemented WC-4DVAR for humidity over the past 18 months of the
CAMEDO project. Model bias correction for humidity shows that the adjusted first-guess
trajectory aligns more closely with the assimilated humidity observations compared to
a control experiment without WC-4DVAR. As WC-4DVAR for humidity progresses
towards operational deployment, further verification over an extended period is
ongoing before potential implementation in the next ECMWF model cycle, CY51R1,
or possibly in an intermediate cycle between 50r1 and 51r1.

In IFS-COMPO, water vapour is now implemented as a control variable (Cycles 49r2
and 50r1), and the assimilation of MLS water vapour has been successfully
demonstrated in research experiments, providing a strong foundation. However, WC-
4DVar has not yet been extended to chemical water vapour. Additional work is needed
before applying the same approach used for specific humidity: estimating the model
error covariance matrix for water vapour based on ANN-derived model error
tendencies for chemical water vapour.
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