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1 Executive Summary 

Deposition products in CAMS can be of interest to several communities and represent a high 
added value potential product. However, the representation of deposition by atmospheric 
composition forecasting systems is fraught with uncertainties. They arise from various causes: 
modelling errors originate from representing processes in a simplified manner, partially, or not 
at all, as not all chemical and physical processes occurring in the atmosphere are well known 
or described. Emissions from anthropogenic or biogenic sources are hard to estimate and can 
be another source of uncertainty. Finally, many atmospheric composition processes are 
largely influenced by meteorology: most reaction rates depend on temperature, gas-particle 
partitioning between gaseous species and secondary inorganic aerosols depend on 
temperature and relative humidity; emissions of sea-salt and desert dust aerosols depend 
primarily on wind speed, deposition depends on precipitation and wind speed. Uncertainties 
in atmospheric composition modelling thus also result from uncertainties of simulated 
meteorological fields. Deposition of aerosols and trace gases is maybe the simulated quantity 
most impacted by uncertainties, as it combines uncertainties of meteorological quantities, in 
particular precipitation for wet deposition, and wind for dry deposition, and of the simulated 
burden, vertical distribution and concentration of the deposited species. 

 

Copernicus Atmosphere Monitoring Service (CAMS) products are subjected from all these 
sources of error and uncertainty. In this deliverable report, we apply an ensemble 
methodology, inspired by and built from the ECMWF meteorological ensemble, to estimate 
the uncertainties of a selection of global CAMS prototype deposition products, using a 
configuration close to that of the currently operational cycle 49R1. Random perturbations have 
been applied to different components of IFS-COMPO, the atmospheric composition modelling 
system applied to produce global CAMS forecasts, and its inputs. The uncertainties introduced 
in this way are then propagated in the perturbed air quality forecasts, and the ensemble 
approach allows to quantify the mean uncertainty of the simulated fields through the ensemble 
spread. The resulting uncertainties are presented in this report for a selection of deposition 
products, periods and forecast times. They also provide a measure of how sensitive CAMS 
products are to errors from different causes (meteorology, emissions, modelling errors). These 
values should be used with care: the presented uncertainties depend on a lot of assumptions 
made about the original uncertainties. For the temporal uncertainties of emissions, input from 
work package 5 was used; for meteorology, we rely on the existing perturbation framework of 
the ECMWF meteorological ensemble, while for modelling uncertainties, a set of assumptions 
were made. Also, the uncertainties presented here are for 2021; however, it was shown that 
the uncertainties of CAMS products depend a lot on the meteorological and atmospheric 
composition of the day, which limits the validity and usefulness of monthly values. 

For a realistic assessment of uncertainties, a well-balanced ensemble is needed. Well-
balanced in this case means an ensemble that is able to capture the observed variability while 
not producing forecasts that are outside the observational space (over dispersion). Several 
evaluation tools have been developed in order to produce metrics to show how well-balanced 
the ensemble is. Those metrics are commonly used and presented for meteorological 
ensembles; however, their use in atmospheric composition is quite new. We’ll present in detail 
these tools and how they were used. Most of the ensemblist diagnostics points to an under-
dispersion or too small spread of the ensemble simulations that have been performed.  

The propagation and relative importance of the different sources of uncertainty vary a lot 
depending on the species considered and the forecast time. In general, anthropogenic 
emissions were found to have a relatively smaller impact on the uncertainty of deposition 
products than other factors. For all parameters, meteorological and model uncertainties are 
the highest source of uncertainty. For the assessed species, dry deposition is less uncertain 
than wet deposition, very likely because its key meteorological input, wind speed, is less 
subject to uncertainties than the precipitation fluxes that modulate simulated wet deposition.  
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2 Introduction 

2.1 Background 

Monitoring the composition of the atmosphere is a key objective of the European Union’s 
flagship Space programme Copernicus, with the Copernicus Atmosphere Monitoring Service 
(CAMS) providing free and continuous data and information on atmospheric composition.  

The CAMS Service Evolution (CAMEO) project will enhance the quality and efficiency of the 
CAMS service and help CAMS to better respond to policy needs such as air pollution and 
greenhouse gases monitoring, the fulfilment of sustainable development goals, and 
sustainable and clean energy.  

CAMEO will help prepare CAMS for the uptake of forthcoming satellite data, including 
Sentinel-4, -5 and 3MI, and advance the aerosol and trace gas data assimilation methods and 
inversion capacity of the global and regional CAMS production systems.  

CAMEO will develop methods to provide uncertainty information about CAMS products, in 
particular for emissions, policy, solar radiation and deposition products in response to 
prominent requests from current CAMS users.  

CAMEO will contribute to the medium- to long-term evolution of the CAMS production systems 
and products.  

The transfer of developments from CAMEO into subsequent improvements of CAMS 
operational service elements is a main driver for the project and is the main pathway to impact 
for CAMEO.  

The CAMEO consortium, led by ECMWF, the entity entrusted to operate CAMS, includes 
several CAMS partners thus allowing CAMEO developments to be carried out directly within 
the CAMS production systems and facilitating the transition of CAMEO results to future 
upgrades of the CAMS service.  

This will maximise the impact and outcomes of CAMEO as it can make full use of the existing 
CAMS infrastructure for data sharing, data delivery and communication, thus supporting 
policymakers, business and citizens with enhanced atmospheric environmental information. 

 

2.2 Scope of this deliverable 

2.2.1 Objectives of this deliverable 

In this deliverable an atmospheric composition ensemble has been developed, evaluated and 
used to provide quantitative estimates of the uncertainties of CAMS deposition products. 

2.2.2 Work performed in this deliverable 

In this deliverable the work as planned in the Description of Action (DoA, WP4 T4.2) was 
performed. 

2.2.3 Deviations and counter measures 

No deviations have been encountered. 

 

 

 

 



CAMEO  
 

D4.5 Uncertainty in deposition ensemble approach  5 

2.2.4 CAMEO Project Partners: 

 

ECMWF EUROPEAN CENTRE FOR MEDIUM-RANGE WEATHER 
FORECASTS 

Met Norway METEOROLOGISK INSTITUTT 

BSC BARCELONA SUPERCOMPUTING CENTER-CENTRO 
NACIONAL DE SUPERCOMPUTACION 

KNMI KONINKLIJK NEDERLANDS METEOROLOGISCH INSTITUUT-
KNMi 

SMHI SVERIGES METEOROLOGISKA OCH HYDROLOGISKA 
INSTITUT 

BIRA-IASB INSTITUT ROYAL D'AERONOMIE SPATIALEDE 

BELGIQUE 

HYGEOS HYGEOS SARL 

FMI ILMATIETEEN LAITOS 

DLR DEUTSCHES ZENTRUM FUR LUFT - UND RAUMFAHRT EV 

ARMINES ASSOCIATION POUR LA RECHERCHE ET LE 
DEVELOPPEMENT DES METHODES ET PROCESSUS 
INDUSTRIELS 

CNRS CENTRE NATIONAL DE LA RECHERCHE SCIENTIFIQUE 
CNRS 

GRASP-SAS GENERALIZED RETRIEVAL OF ATMOSPHERE AND 
SURFACE PROPERTIES EN ABREGE GRASP 

CU UNIVERZITA KARLOVA 

CEA COMMISSARIAT A L ENERGIE ATOMIQUE ET AUX 
ENERGIES ALTERNATIVES 

MF METEO-FRANCE 

TNO NEDERLANDSE ORGANISATIE VOOR TOEGEPAST 
NATUURWETENSCHAPPELIJK ONDERZOEK TNO 

INERIS INSTITUT NATIONAL DE L ENVIRONNEMENT INDUSTRIEL 
ET DES RISQUES - INERIS 

IOS-PIB INSTYTUT OCHRONY SRODOWISKA - PANSTWOWY 
INSTYTUT BADAWCZY 

FZJ FORSCHUNGSZENTRUM JULICH GMBH 

AU AARHUS UNIVERSITET 

ENEA AGENZIA NAZIONALE PER LE NUOVE TECNOLOGIE, 
L'ENERGIA E LO SVILUPPO ECONOMICO SOSTENIBILE 

 

  



CAMEO  
 

D4.5 Uncertainty in deposition ensemble approach  6 

3 Deposition in global CAMS and associated uncertainties 

3.1 Deposition related problematic 

Atmospheric removal processes are governed by wet scavenging and dry deposition. 
Precipitation removes atmospheric species, including critical water-soluble nutrients like 
ammonium (NH₄⁺) and nitrate (NO₃⁻), as well as dissolved iron forms (ferrous and ferric 
organic ligands), all of which can impact vegetation productivity. Gases and particles can settle 
onto surfaces, including reactive nitrogen gases like ammonia (NH₃) and nitrogen oxides 
(NOₓ), which can also interact with vegetation and soils. Nutrient-containing aerosols, such as 
Fe and P-containing mineral dust aerosols, are also significantly influenced by sedimentation, 
which affects their lifetime during long-range transport. However, compared to wet deposition 
fluxes, dry deposition fluxes are often more variable and frequently affected by nearby 
activities, such as agricultural or urban emissions. 

Desert dust deposition poses a significant challenge to the efficiency of solar panels, 
particularly in arid and semi-arid regions. As fine dust particles settle on the surface of 
photovoltaic modules, they scatter and absorb incoming sunlight, drastically reducing the 
amount of solar radiation that reaches the solar cells. This phenomenon, known as "soiling," 
can diminish energy output by as much as 20–50% in some extreme cases, depending on 
dust composition, climate conditions, and the frequency of precipitation and cleaning. Over 
time, this not only reduces the overall energy yield but also increases operational and 
maintenance costs, as regular cleaning is required to restore performance. The impact is 
especially pronounced during dry seasons or dust storm events, making soiling one of the key 
performance-limiting factors for solar installations in desert environments. 

Atmospheric nutrient deposition plays a critical role in both and marine ecosystems (GESAMP; 
2022), enhancing productivity in high-nutrient, low-chlorophyll oceanic regions and impacting 
Earth's carbon cycle. Nitrogen and sulphur deposition in the global ecosystem originates 
largely from human activities such as consumption of fossil fuels, production and usage of 
fertilizers, and livestock cultivation, and may increase by a factor of ~2.5 from 2000 to 2100 
(Lamarque et al., 2005). Increased nitrogen deposition can cause exceedance of critical loads 
on ecosystems (Sun et al., 2020). Elevated sulphur and nitrogen deposition are also 
associated with a host of environmental issues such as acidification and eutrophication of the 
terrestrial system, while increasing nitrogen deposition could enhance the carbon uptake by 
land processes (Reary et al., 2008; Holland et al., 1997).  

 

3.2 Deposition in global CAMS 

IFS-COMPO, the global atmospheric composition forecasting system used in the global 
CAMS systems, produces experimental products of wet and dry deposition for a wide range 
of particulate and gaseous species. Ongoing efforts in CAMS and CAMEO to evaluate these 
products against observational datasets. Wet deposition in cycle 49R1 is parameterized 
following Luo et et al (2019), using as input the 3D concentration of the species of interest and 
liquid and solid precipitation fluxes. Reevaporation is taken into account, following De Bruine 
et al (2018). As a first order, wet deposition of a given species depend on its burden and on 
simulated precipitation. Dry deposition of particles in IFS-COMPO is parameterized as a 
function of particle size, surface type and wind speed following Zhang and He (2014). Dry 
deposition of gaseous species is adapted from Wesely et al (1989). More details on the IFS-
COMPO deposition parameterizations can be found in the cycle 49R1 documentation, 
available at https://www.ecmwf.int/en/elibrary/81630-ifs-documentation-cy49r1-part-viii-
atmospheric-composition . 

 

https://www.ecmwf.int/en/elibrary/81630-ifs-documentation-cy49r1-part-viii-atmospheric-composition
https://www.ecmwf.int/en/elibrary/81630-ifs-documentation-cy49r1-part-viii-atmospheric-composition
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3.3 Estimating deposition uncertainties through an ensemble approach 

A number of factors can lead to errors and uncertainties in deposition products. Uncertainties 
can arise from: 

• Meteorological variables such as wind, temperature and precipitation, which impact 

directly wet and dry deposition, but also indirectly, as changes in meteorology can 

also impact emissions (desert dust, sea-salt aerosol) or production (sulfate, nitrate). 

• Emissions : in addition to the emissions computed online for desert dust and sea-salt, 

emissions from many sectors are provided by monthly emission files. Estimating 

emissions is hard and can be subject to large uncertainties, which directly impact in 

return simulated deposition. Work package 5 provided some estimates of the 

uncertainty of temporal profiles of emissions. 

• Initial conditions : The initial conditions of each forecast can be more or less 

erroneous which, depending on the lifetime of the species considered can have a 

more or less significant impact on the simulated values. 

• Model error: many atmospheric composition processes, including wet and dry 

deposition, are represented in a simplified way in IFS-COMPO. These errors can 

combine in a non-linear way; processes concerned include dry and wet deposition, 

the representation of desert dust and sea-salt aerosol emissions, chemical 

photolysis, chemical reaction rates, etc. 

• Desert dust emission scheme inputs: apart from the dust emission scheme, a high 

degree of uncertainty affects its inputs, i.e. the assumed geographically varying silt, 

sand and clay fraction of the soil, the dust source function used to correct dust 

emissions, and the size distribution used at emissions. 

  

In work package 6, a global atmospheric composition ensemble based on IFS-COMPO has 
been developed and tested, which is described in Section 4. This IFS-COMPO ensemble 
allows for a quantification of the propagation of uncertainties arising from the different sources 
of uncertainties listed above on the IFS-COMPO output, including deposition products. 
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4 Implementation of a global atmospheric composition ensemble 
forecasting system 

ECMWF is producing ensemble weather forecasts since 1992. An ensemble weather forecast 
is a set of forecasts that present the range of future weather possibilities. Multiple simulations 
are run, each with a slight variation of its initial conditions and with slightly perturbed weather 
models (Figure 1). These variations represent the inevitable uncertainty in the initial conditions 
and approximations in the models. They produce a range of possible weather conditions. Here 
we would like to extend the existing weather ensemble to atmospheric composition, by using 
the IFS-COMPO (Integrated Forecasting System with atmospheric composition extensions) 
instead of IFS in the existing ensemble architecture, and by introducing optional perturbations 
of initial conditions, emissions and model processes that are specific to atmospheric 
composition, and aim to represent the impact of uncertainties not related to meteorology. 

 

 

 

 

Figure 1: Schematic showing the principles of ensemble forecast. (Julia Slingo and Tim 
Palmer, 2011, http://doi.org/10.1098/rsta.2011.0161) 

 

4.1 Description of the IFS-COMPO ensemble 

The IFS-COMPO ensemble is built on the NWP ensemble in a cycle 48R1 configuration: they 
include a single control or unperturbed run, and 50 perturbed members. The IFS-COMPO 
version used in this work is cycle 48R1 but including the aerosol and chemistry developments 
that have been implemented into cycle 49R1. As such, the results are valid for cycle 49R1, 
but using cycle 48R1 meteorology and meteorological ensemble perturbation. The ensemble 
uses an analysis field as initial conditions, so including aerosol and chemistry data 
assimilation. The perturbations applied to the meteorological fields are those of the IFS 
meteorological ensemble, described in the cycle 48R1 documentation 
(https://www.ecmwf.int/en/elibrary/81371-ifs-documentation-cy48r1-part-v-ensemble-
prediction-system). They consist of perturbations of the meteorological initial conditions, which 
are provided from an ensemble of data assimilations (EDA), and perturbations constructed 
from the leading singular vectors. Model uncertainties are represented in the meteorological 
ensemble with the Stochastically Perturbed Parameterization Tendencies scheme (SPPT). It 
simulates the effect on forecast uncertainty of random model errors due to the parametrized 
physical processes. The SPPT scheme is described in detail in the cycle 48R1 documentation 
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(https://www.ecmwf.int/sites/default/files/elibrary/2023/81371-ifs-documentation-cy48r1-part-
v-ensemble-prediction-system.pdf). It perturbs the meteorological tendencies by terms that 
are given by a generic random pattern, times the net parameterized physics tendencies, less 
the diagnosed clear-sky heating rate. The random pattern varies horizontally (but not 
vertically) and with time; each ensemble member uses a different realisation of the random 
pattern.  

On top of the meteorological perturbations, which are using already existing features of the 
NWP ensemble, the following set of perturbations have been implemented: 

 

• Perturbations of the initial conditions of all aerosol and selected (carbon monoxide, 

ozone, sulphur dioxide and nitrogen dioxide) chemistry tracers in the troposphere  

• Perturbation of the inputs of the dust emission scheme: dust source function (DSF), 

sand/silt/clay fraction of the soil used for dust emissions and assumed size 

distribution at emissions 

• Perturbation of the anthropogenic emission inputs of IFS-COMPO 

• Perturbation of atmospheric composition specific model parameterizations: 

o Computation of dry deposition velocity 

o Rates of chemical reactions 

o Photolysis rates 

o Wet deposition and re-evaporation rates 

o Production rate of sulphate and nitrate aerosols 

o Production rate of secondary organic aerosols 

o Emissions of desert dust and sea-salt aerosols 

 

Ensemble simulations can be carried out using all or a selection of the perturbations presented 
above. Also, we developed the possibility to run ensemble simulations without perturbations 
of meteorological initial conditions and parameterizations, so as to allow to assess the impact 
of the uncertainties of atmospheric composition specific inputs and processes. It should be 
noted that perturbations of different input/parameterizations are assumed to be 
uncorrelated, and perturbations are supposed to be constant for all forecasts time, 
which is a strong (and probably wrong) assumption. In addition to this, for the relevant 
perturbations (initial conditions, model components), the perturbations are similar over the 
vertical. The perturbations themselves consist of 2D fields that represent correlated gaussian 
noise, computed using a given correlation length and standard deviation. They are computed 
on-the fly using a python script that is called in the IFS-COMPO scripts, and are applied to 
each relevant model input (emissions, initial conditions, etc.). For the model 
parameterizations, two such stochastic perturbations are computed, loaded into IFS-COMPO, 
and used in the IFS-COMPO Fortran code to scale the output of the parameterizations listed 
above. Figure 2 shows an example of such a perturbation. 

 

 

file:///C:/Users/strp/Downloads/(https:/www.ecmwf.int/sites/default/files/elibrary/2023/81371-ifs-documentation-cy48r1-part-v-ensemble-prediction-system.pdf
file:///C:/Users/strp/Downloads/(https:/www.ecmwf.int/sites/default/files/elibrary/2023/81371-ifs-documentation-cy48r1-part-v-ensemble-prediction-system.pdf
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Figure 2: Example of a perturbation scaling factor generated with a correlation length of 500km 
and a standard deviation of 0.5. 

Table 1 lists the specifics of the perturbations applied to the atmospheric composition initial 
conditions, the inputs of the dust emission scheme and the model parameterizations. These 
values have been obtained by evaluating how dispersive the ensemble is, depending on the 
specifics of the input perturbations. For the initial conditions, it was found that higher standard 
deviations could make ensemble simulations over dispersive for long lived species, such as 
carbon monoxide and ozone, and much lower values have been used for later simulations. 

Table 1: Standard deviation and correlation length of the random perturbations applied to 
different inputs and parameterizations of the IFS-COMPO ensemble 

Perturbed field Standard deviation of 
perturbation factor (unitless) 

Correlation length of 
perturbation factor (km) 

Aerosol initial conditions 0.25 500 

CO initial conditions 0.04 500 

O3 initial conditions 0.07 500 

NO2 initial conditions 0.125 500 

SO2 initial conditions 0.19 500 

Model parameterizations 0.5 500 

Inputs of the dust emission 
scheme 

0.5 500 

 

 

Simulations have been carried out with correlation lengths varying between 250 and 2000km, 
in order to check the sensitivity of the ensemble spread on this particular parameter. The 
impact of the perturbation correlation length on the ensemble spread, averaged monthly and 
over the globe, was found to be very small. Those runs led to the selection of correlation 
lengths presented in Table 1. A special treatment has been implemented for the perturbation 
of emission input, detailed in the next subsection. 
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4.1.1 Perturbation of emission input 

For emissions, sectoral perturbations are used, i.e., the perturbations are the same for the 
emissions of all the species of a given emission sector. This is a strong assumption which is 
most likely erroneous; however, as we don’t have more information about the uncertainties of 
the emissions of specific species for the same sector, there was no choice but to use this 
hypothesis. 

Work package 5 delivered at the end of May 2024 estimates of the temporal uncertainties of 
anthropogenic emissions. For more details on how these estimates were computed, please 
refer to deliverable D5.1. These consist of global values representing the standard deviation 
for each hour for the diurnal cycle uncertainties, and gridded monthly standard deviation to 
represent the uncertainty of the seasonal cycle. These two sets of standard deviations are 
provided for each emission sector. An example of the monthly standard deviation is shown in 
Figure 3 for the energy sector. 

 

  

Figure 3: Standard deviation in emissions from the energy sector, January (left) and July (right). 

Following the advice of the WP5 leader, the maximum value of the uncertainty standard 
deviation of the diurnal cycle was used. The values are summarized in Table 2. 

 

Table 2: Standard deviation of the uncertainty of anthropogenic emissions, per sector. 

Sector Standard deviation of correction factor 

Ind/Industry 0.15 

Res/Residential 0.487 

Agl/Agriculture 0.451 

Awb/Agriculture waste burning 1.233 

Ene/Energy 0.063 

Tro/Transport 0.397 

Fef/Fugitives 0.25 

Slv/Solvents 0.375 

Tnr/Non road transport 0.469 

Swd/Solid waste 0.25 

Shp/Ship 0.25 
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These values are used, with a correlation length of 500km, to generate perturbation files. On 
top of this, the gridded monthly values are used to modulate the perturbations, by scaling the 
perturbation over each grid cell by the gridded monthly value divided by the spatial average of 
the gridded monthly value. An example is shown in Figure 4, for the energy sector in January. 
The higher perturbations over Iceland and Estonia/Latvia correspond to areas where the 
gridded values that represent the seasonal uncertainty spread for this month are the highest, 
as shown in Figure 3.  

 

Figure 4: Example of a perturbation scaling factor for emissions from the energy sector in 
January. 

The perturbations of emissions computed following this methodology only represent the 
temporal uncertainties as provided by WP5. They don’t include other aspects of emissions 
uncertainties, relating to activity data used to compute the emissions, conversion factors etc. 
is not taken into account, which means that it is very possible that the emissions uncertainties, 
as represented by the estimated perturbations are underestimated. 

 

4.2 Experiments 

A number of experiments have been carried out in order to evaluate and adjust the 
perturbations applied to initial conditions, emissions and model parameterizations, which are 
not shown here. The ensemble simulations use initial conditions (before perturbation) from 
analysis simulations from cycle 48R1 for the year 2021. They use a cycle 48R1 branch, which 
includes modelling updates for cycle 49R1. As such, the uncertainties shown are 
representative of the uncertainties of the official cycle 49R1 products, but for the year 2021. 

The experiment specifics are the following: 

• TL255L137 resolution (80km grid cell) 

• 120h maximum forecast time, output every 12 hours 

• Simulated year 2021 

• Use of CAMS_GLOB_BIOv3.1 and CAMS_GLOB_ANT v5.3 emissions 

Because of the high computing costs of the IFS-COMPO ensemble experiments, most of them 
didn’t complete the year 2021. We chose to show results for experiments that perturb i) only 
meteorological fields, ii) only anthropogenic emissions, iii) only model parameterizations, and 
iv) all uncertainties combined. For desert dust, the experiment that perturbs the inputs of the 
dust emission scheme is also shown instead of the one that perturbs anthropogenic emissions. 
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The choice of experiments was made so as to isolate and describe clearly the impact of each 
possible perturbation family (meteorology, emissions, model, desert dust emission scheme 
inputs), and to compare the impact of each of these perturbations to the impact of their full 
combination (experiment ALL). The experiments are listed in Table 3.  

 

 

Table 3: IFS-COMPO ensemble experiments shown in this report 

Experiment Characteristics 

MET Perturbations of meteorological initial conditions and processes 

EMI Perturbations of anthropogenic emissions input only, using WP5 
input 

MODEL Perturbation of atmospheric composition model parameterizations 
only: 

• Computation of dry deposition velocity 

• Chemical reaction rates 

• Photolysis rates 

• Wet deposition and re-evaporation rates 

• Production rate of sulphate and nitrate aerosols 

• Production rate of secondary organic aerosols 

• Emissions of desert dust and sea-salt aerosols 

ALL All perturbation applied: 

• Meteorological initial conditions and processes 

• Atmospheric composition initial conditions 

• Atmospheric composition model parameterizations 

• Inputs of the dust emission scheme 

• Anthropogenic emission input using WP5 input 

DUST Perturbation of the inputs of the dust emission scheme :  

• dust source function 

• fraction of soil composed of silt and clay 

• assumed size distribution at emissions 

ALL_NOMODEL All perturbations applied except model parameterizations 

INI Perturbation of atmospheric composition initial conditions only 
 

 

Experiments will be shown in the following sections based on their relevance, not all 
experiments will be included. In particular, the estimated deposition uncertainties will be shown 
for MET, EMI, MODEL and ALL, and for DUST instead of EMI for desert dust. 
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5 Evaluation of the ensemble forecasts 

The raw ensemble forecasts look like the stamp plot shown in Figure 5, which shows how a 
situation with high PM10 from a desert dust plume over South of France and Northern Italy is 
simulated by an IFS-COMPO ensemble simulation. These plots include a lot of information; 
however, it can be hard to compare simulations from one ensemble against another, or even 
two different simulations of the same ensemble. To do this, metrics that incorporate 
information from all ensemble members are needed, such as the ensemble standard deviation 
or spread and ensemble median. Examples of these two quantities are shown in Figure 6 for 
surface ozone from two IFS-COMPO ensembles: MET and ALL, for a single day that saw high 
ozone concentrations over most of Europe. The ensemble median is very similar for the two 
experiments, with an area of values above 100 μg/m3 that covers most of Western Europe. 
The spread of MET is relatively small, between 2 and 5 μg/m3 in general, which shows that 
the meteorological perturbations have relatively little impact on simulated ozone on that day. 
The spread is significantly higher for ALL, with values generally between 10 and 15 μg/m3 over 
most of Europe, which indates that ozone perturbations are sensitive to other perturbations 
than meteorology. 

 

 

Figure 5: Simulated PM10 in microg/m3 at 24h forecast time over Western Europe, simulation 
starting on 6/2/2021, IFS-COMPO ensemble perturbing meteorology only.  
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Figure 6: IFS-COMPO ensembles MET (top) and ALL (bottom), surface ozone at 36h forecast, 
run starting on 15/6/2021. Ensemble median (left) and standard deviation/spread (right).  

 

Comparing the spread of two ensemble simulations is a good way to assess how sensitive the 
model is to perturbations of each kind of input. However, this doesn’t give any information if 
the spread is “too low” or “too high”. For this, skill scores that involve observational datasets 
are required. We implemented two different metrics  

• A comparison of ensemble spread and the root mean square error (RMSE) of the 

ensemble mean, 

• Rank histograms (Talagrand diagrams), 

• Comparison of simulated and observed probability density functions. 

It is common practice to assess the skill of an ensemble by comparing the ensemble mean 
RMSE and the ensemble standard deviation (ensemble spread). We chose this approach over 
other possible ensemblist verification metrics such as CRPS and its Hersbach decomposition, 
etc.  The former measures how accurate the ensemble mean is, i.e. how near the mean of the 
ensemble forecasts is to analysis fields or observations; the latter verifies whether the 
ensemble forecasts simulated a wide enough range of possible atmospheric states to reflect 
the error characteristics of the ensemble mean. Ideally, one would want the ensemble mean 
RMSE to be as small as possible and the spread to be equal to the ensemble mean RMSE 
on average over many cases. 

For the verification of ensemble forecasts the Rank histograms (also called Talagrand 
diagrams) are widely used. This type of diagram shows how often observations match different 
parts of an ensemble forecast distribution. To this end, the ensemble forecast distribution is 
divided into bins of equal size, matching the ensemble size (or number of members), for 
example going from low predicted to high predicted AOD at 550nm. The observations are then 

Ens median Ens stdev 

MET 

ALL 
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put in the appropriate bins forming a histogram. In a reliable ensemble forecast, the frequency 
of observations in each bin will be identical since each part of the ensemble forecast 
distribution is equally likely. Figure 7 show three examples of simulated and observed 
probability distributions along with rank histograms. When the ensemble is well calibrated the 
rank histogram is roughly flat. High values at the extremes diagnose an ensemble with too 
little spread, also called under dispersive. A biased ensemble will show a slope. Finally, an 
over-dispersive ensemble (not shown) will show high values in the middle ranks, and null or 
lower values at the extremes. 

 

 

 

Figure 7: Three examples of probability distribution and rank histograms, showing well balanced 
(top row), under-dispersive (middle row) and biased situations (bottom row).  

 

This ensemblist scores can be computed using either an observational dataset, or against 
their own analysis. Each approach has its benefits and drawbacks. Using the ensemble 
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analysis for verification is more adequate for assimilated quantities (such as AOD) than for 
non assimilated species, as the analysis is then deemed more reliable. Using this method for 
PM2.5 or surface ozone for example is not advised (at least as long as they are not 
assimilated), as the link between the analysis and observations is indirect in the global CAMS 
system. Using its own analysis for verification is also very convenient because the model 
space and the observation space are the same; there are no resolution or representativeness 
issues. Verification against observational datasets offer a better reference than against own 
analysis; however, the data can be sparse and there can be representativeness issues 
between observation and model. In this section, we present rank histograms computed against 
both observational datasets and own analysis. 

 

 

5.1 Rank histograms (Talagrand diagrams) 

5.1.1 AOD at 550nm 

Figure 9 shows the observed and simulated frequency distribution, a rank histogram and a 
time series of observed versus simulated Aerosol Optical Depth (AOD) at 500nm for the ALL 
experiment in February 2021, for a 120h forecast time. The evaluation is done against all 
AERONET level 2 data available in February 2021. The AERONET network is shown in Figure 
8. 

 

Figure 8: AERONET level 2 AOD at 500nm in the summer of 2020, values and sample size.  

 

The rank histogram shows that for AOD and this experiment, the IFS-COMPO ensemble is 
clearly under dispersive: a significant amount of observations falls outside of the 50 members 
and are above the maximum values out of the 50 members (high value for entry 50 in the X 
axis). This is also shown by the lower ensemble standard deviation (0.15) as compared to the 
observation standard deviation (0.19). The ensemble suffers also from a negative bias, which 
is also apparent in the time series: both the control and ensemble mean are most of the time 
below the observational average because of a persistent low bias of the control run over the 
considered period. As such, the low bias shown here is rather a consequence of inherent 
model bias, also present in the control run. However, the ALL experiment lacks the ability to 
represent a significant fraction of the observed space for AOD at 550nm. 
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Figure 9: ALL experiment, February 2021, 120h forecast time, evaluation of AOD at 550nm versus 
all AERONET level 2 observational data. Top left, frequency distribution; top right, rank 
histogram. Bottom, time series of daily observed mean AOD at 550nm averaged over all 
AERONET stations together with the ensemble mean and median and values simulated by the 
control run. The ensemble 20% and 80% centiles as well as the envelope are shown. 

 

Figure 10 shows a similar global evaluation of a series of IFS-COMPO ensemble simulations 
by a rank diagram, but against their own analysis instead of against observations, for AOD at 
550nm simulated at 120h forecast time. The diagnostic is similar to that reached against 
AERONET: all of the ensembles are more or less under dispersive for AOD. However, at the 
global scale, there is no sign of a positive or negative bias (this is not the case for the regional 
evaluation, not shown). The EMI and INI experiments are significantly more under dispersive 
than the MET one, showing that for AOD, the perturbations applied to the atmospheric 
composition initial conditions as well as anthropogenic emissions yield relatively little 
ensemble spread. The ALL_NOMODEL experiment is slightly less under dispersive than MET, 
but by a small margin: this shows that meteorological perturbations have the largest impact 
on ensemble spread for AOD, as the spread of the ensemble perturbing meteorology and of 
the ensemble perturbing all source of uncertainties apart from model error are quite similar 
(perturbations of the atmospheric composition model parameterizations were not evaluated in 
this context). 



CAMEO  
 

D4.5 Uncertainty in deposition ensemble approach  19 

 

 

Figure 10: January 2021, 120h forecast time, evaluation of AOD at 550nm versus own analysis. 
Rank histogram of MET (grey), ALL_NOMODEL (blue), EMI (red), and INI (green). 

 

 

5.1.2 PM2.5 

Rank histograms have been built also for PM2.5 against European airbase/EEA stations, for 
simulated PM2.5 at 120h forecast time in February 2021 by the MODEL and ALL experiments 
(Figure 11). The two experiments are under-dispersive and negatively biased, although the 
under-dispersion is less pronounced for the ALL experiment. This negative bias is very 
apparent in the time series, which shows that up to 20/21 February 2021, the control run and 
ensemble mean PM2.5 are significantly lower than the observational average. The MODEL 
experiment struggles to reach observed values even for the maximum ensemble values, while 
the ALL experiment sometimes manages to reach the observed value. The period 20-25 
February 2021 was marked by a combined pollution and dust intrusion event over most of 
Western and Central Europe, which is reflected in the higher observed average PM2.5. The 
simulated values are less impacted by a low bias during this period. 
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Figure 11: Top, rank histograms of MODEL experiment (left) and ALL experiment (right), 
February 2021, 120h forecast time, evaluation of PM2.5 versus all available airbase/EEA data 
over Europe. Bottom, time series of daily observed mean PM2.5 in February 2021 over European 
stations together with the ensemble mean and median and values simulated by the control run. 
The ensemble 20% and 80% centiles as well as the envelope are shown. 
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6 Uncertainties of selected CAMS deposition products 

In this section, we present monthly average standard deviation and relative standard deviation 
(normalized by the ensemble mean value) of IFS-COMPO ensembles MET, DUST, MODEL 
and ALL for a selection of species. We focused on the following species: 

• Desert dust, because its deposition is of importance to many users, and also to study 

how perturbations of the online dust emissions are propagated to deposition 

uncertainties, 

• Sulfate, because of its impact on soil and precipitation acidity, 

• Organic matter, a good tracer of anthropogenic pollution as well of fire events, 

• Nitric acid, a gaseous precursor of nitrate aerosols.  

 

The uncertainty of the sum of dry deposition and sedimentation is shown, as well as wet 
deposition. For wet deposition of particles, we show only the contribution from large scale 
precipitation, as it is by far the dominant contribution. For nitric acid, total wet deposition is 
shown. The standard deviation, or ensemble spread, is taken as a measure of the uncertainty 
of the simulated products. Other measures are possible, such as the difference between the 
25 and 75% percentiles. The spread is shown for two months, February and May 2021, and 
also at 24h forecast time and 120h forecast time (for May 2021, only 120h forecast time is 
shown), in order to assess how forecast time impacts the uncertainty of deposition products. 
We chose to show monthly values, as the daily variability is very high, particularly for wet 
deposition, which depends on simulated precipitation fields. The values shown for February 
and May 2021 differ for absolute spread, but are usually rather similar for relative spread. 
Other months also show values in the same range for relative spread: the results shown in 
this section can qualitatively be extended to other months as far as relative spread is 
concerned. 

 

6.1 Desert dust 

In this subsection, the simulated uncertainty of dust deposition (total, dry and wet deposition) 
are discussed. 

 

6.1.1 Total deposition 

Figures 12, 13 and 14 show the ensemble spread and relative spread of desert dust total 
deposition from the MET, DUST, MODEL and ALL experiments, for February 2021 and for 24 
and 120h forecast time, and for May 2021 only 120h forecast time except for MODEL and ALL 
for which data is incomplete for that month. The absolute total dust uncertainty depends 
primarily on the simulated dust burned and surface concentration :  values reach around 0.1 
kg/m²/year over the major source areas (Sahara, middle East), and decrease sharply over 
outflow regions. For total dust deposition at 24h forecast, the uncertainty caused by 
meteorological factors and model perturbations is much higher than the uncertainty arising 
from the inputs of the dust emission scheme. This is also because those uncertainties (of the 
inputs of the dust emission scheme) propagated only over 24h of forecast, so are limited to 
regions close to source areas. At 120h forecast times, the uncertainties from the inputs of the 
dust emission scheme have propagated much farther, as illustrated by the Atlantic for 
example. The relative spread is highly variable, often higher over continents than over oceans, 
except for an area of high values along the Equator in the Atlantic Ocean. Values are 
comprised between 20 and 50% in general, higher over some dust source regions (South 
Sahara, Taklimakan). The uncertainties arising from meteorology and from model 
perturbations are quite close in range in general. For DUST, the uncertainties as measured 
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by the spread is in general between 20 and 30%, with values reaching 50% over specific 
source areas such as Australia and Taklimakan. 

The uncertainty of total dust deposition is unsurprisingly higher for 120h forecasts, with values 
between 35 (over oceans) to more than 70% for MET and MODEL, while DUST perturbations 
are generally between 20 and 30% over continents (closer to 50% over some source areas). 
Some regions with very high relative spread correspond to areas with relatively small absolute 
spread, indicating that the small value of the ensemble mean contributes to the high value of 
the relative uncertainty. Also, meteorological perturbations could result in the transport of dust 
over areas with a low dust burden, which mechanically provokes a very high relative spread. 
Also, it is clear that the propagation of uncertainties through the IFS-COMPO ensemble is a 
very non-linear phenomenon: the spread of ALL is smaller than the sum of the spread of MET, 
MODEL and DUST. Actually, the relative spread of ALL is even lower than that of MET over 
some regions such as the Eastern Atlantic, which is surprising and can only be explained by 
meteorology and model perturbations attenuating each other. 

In May 2021, the absolute uncertainty is much higher than in February, mostly because 
simulated dust deposition is higher over many regions. The relative spread is higher over many 
regions including most of Sahara for MET, but the relative uncertainty of DUST is quite similar 
between February and May 2021. 
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Figure 12: Spread (left) in kg/m²/yr and relative spread (right) of the MET, DUST, MODEL and ALL 
experiments for simulated dust total deposition in February 2021, at 24h forecast time. 
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Figure 13: Spread (left) in kg/m²/yr and relative spread (right) of the MET, DUST, MODEL and ALL 
experiments for simulated total dust deposition in February 2021, at 120h forecast time. 
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Figure 14: Spread (left) in kg/m²/yr and relative spread (right) of the MET and MODEL 
experiments for simulated total dust deposition in May 2021, at 120h forecast time. 

 

6.1.2 Dry deposition and sedimentation 

In order to better understand the uncertainty of total dust deposition, we will now focus on the 
sum of desert dust dry deposition and sedimentation in this section, and on wet deposition in 
next section. For the sum of dust dry deposition and sedimentation (Figures 15, 16 and 17) 
the EMI experiment is not shown, as its impact is very small. The uncertainty of dust dry 
deposition and sedimentation is much higher over continents than over oceans for all 
experiments. This is partly caused by the fact that the dust surface concentration (for dry 
deposition) and burden (for sedimentation) is usually higher over continents than over oceans. 
But the relative spread also shows lower values over oceans, which is likely caused by lower 
uncertainties for dry deposition over smooth surfaces (water) as opposed to higher 
uncertainties and spread over rough surfaces. The lower values for relative spread over the 
Atlantic with MET could be also because those areas could be relatively less impacted than 
regions closer to the main dust emitting areas by the uncertainty arising from dust emissions. 
Over the main dust emitting regions, the values of absolute and relative spread are similar to 
those noted for total deposition, showing that over these regions, which see very little 
precipitation, the bulk of the dust deposition uncertainty comes from dry deposition and 
sedimentation. At 120h forecast time, the area concerned by higher uncertainties is quite 
similar between all experiments. The relative spread is close between MET and MODEL, a bit 
higher for MODEL over the Atlantic at 24h forecast time. The relative spread of ALL at 120h 
show very similar patterns to MODEL but values only slightly larger. The relative spread is 
close between February and May 2021. 
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Figure 15: Spread (left) in kg/m²/yr and relative spread (right) of the MET, DUST, MODEL and ALL 
experiments for simulated dust dry deposition and sedimentation in February 2021, at 24h 
forecast time. 
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Figure 16: Spread (left) in kg/m²/yr and relative spread (right) of the MET, DUST, MODEL and ALL 
experiments for simulated dust dry deposition and sedimentation in February 2021, at 120h 
forecast time. 
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Figure 17: Spread (left) in kg/m²/yr and relative spread (right) of the MET, DUST and MODEL  
experiments for simulated dust dry deposition and sedimentation in May 2021, at 120h forecast 
time. 
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6.1.3 Wet deposition 

The patterns of the absolute and relative spread of dust wet deposition (Figures 18, 19 and 
20) are very different from those of dry deposition. At 24h and 120h forecast time, the areas 
with high absolute and relative uncertainty correspond to outflow areas, where dust is 
transported and subjected to precipitation. In February, the highest absolute uncertainty, 
comprised between 0.01 and 0.02 kg/m²/year, corresponds to Western Europe, the Middle 
East, and the Atlantic around the equator. Western Europe in particular was impacted by two 
large dust events on 6-7 and 20-22 February 2022, with associated wet deposition events. 
The values are much lower than that of dry deposition absolute uncertainty, because they are 
concentrated far away from dust sources, where the burden and surface concentrations are 
much lower than over source regions. The relative spread, on the other hand, shows very high 
values, between 40 and 60% in general for MET, with a lot of noise. The high values could be 
partly artificial in the sense that the normalisation to compute the relative spread is done using 
the control (i.e. unperturbed) run. If precipitation patterns are changed in the ensemble 
members, as is very likely in particular for the MET experiment, then it is possible to have 
extremely high relative spread because of a very low normalisation denominator, if 
precipitations/wet deposition are absent from the control run. Unlike dry deposition, the 
absolute and relative uncertainty of desert dust wet deposition doesn’t increase much with 
forecast time: the values at 120h forecast time are quite comparable to those at 24h forecast 
times. The patterns change in May 2021 as compared to February 2021 because dust source 
and outflow regions change also, but the relative spread is comparable to the February 2021 
values. 
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Figure 18: Spread (left) in kg/m²/yr and relative spread (right) of the MET, DUST, MODEL and ALL 
experiments for simulated dust large scale wet deposition in February 2021, at 24h forecast time. 
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Figure 19: Spread (left) in kg/m²/yr and relative spread (right) of the MET, DUST, MODEL and ALL 
experiments for simulated dust large scale wet deposition in February 2021, at 120h forecast 
time. 
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Figure 20: Spread (left) in kg/m²/yr and relative spread (right) of the MET and DUST experiments 
for simulated dust large scale wet deposition in May 2021, at 120h forecast time. 
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6.2 Sulfate 

6.2.1 Dry deposition 

Figures 21,22 and 23 show the ensemble spread and relative spread of sulfate dry deposition 
fluxes as estimated by the MET, EMI, MODEL and ALL experiments, for Febuary 2021 and 
for 24 and 120h forecast time, and for May 2021 only 120h forecast time. Sulfate dry deposition 
occurs over oceans, both from the transport and deposition of sulfate that is produced out of 
continental anthropogenic emissions, but also in more remote locations (Southern oceans, 
Pacific, etc.) from the deposition of sulfate produced out of oceanic DMS. This explains the 
non-negligible uncertainty of sulfate dry deposition over all oceans. The MODEL and ALL 
experiments show much higher absolute and relative spread than the MET and EMI 
experiments. The relative spread is often higher over continental regions, with values over 30-
40% over Equatorial Africa and Amazon for MET, 10-20% for EMI, and 50-60% for MODEL 
and ALL. Over oceans, the values of the relative spread are quite homogeneous for all 
experiments except MEL: at 24 forecast time, they range between 5 and 20% for MET, 0-5% 
for EMI, 30-40% for MODEL and 40-50% for ALL. At 120h forecast time, the spread and 
uncertainty increase significantly for MET, EMI and ALL (particularly over extra tropical 
oceans), less so for MODEL.  
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Figure 21: Spread (left) in g/m²/yr and relative spread (right) of the MET, EMI, MODEL and ALL 
experiments for simulated sulfate dry deposition in February 2021, at 24h forecast time. 
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Figure 22: Spread (left) in g/m²/yr and relative spread (right) of the MET, EMI, MODEL and ALL 
experiments for simulated sulfate dry deposition in February 2021, at 120h forecast time. 
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Figure 23: Spread (left) in g/m²/yr and relative spread (right) of the MET, EMI, MODEL and ALL 
experiments for simulated sulfate dry deposition in May 2021, at 120h forecast time. 
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6.2.2 Wet deposition 

 

The absolute and relative uncertainty of sulfate wet deposition in February and May 2021 is 
shown in Figure 24, 25 and 26. Unfortunately, the data to compute the relative spread of MET 
was not available. The absolute spread is much higher for all experiments than that of dry 
deposition, which is explained by the fact that for sulfate, wet deposition if, on a global average, 
a much more efficient sink than dry deposition. For all experiments, the patterns show a 
combination of regions with high anthropogenic emissions (East Asia, Europe, East US) and 
with high precipitation (the ITCZ, Southern Oceans). At 24h forecast time, the values are quite 
similar between MET, MODEL and ALL, reaching 0.5 to 1 g/m²/year over the most impacted 
regions. The relative spread is very noisy over areas with relatively low precipitations, probably 
because of the reasons noted above (very low values of wet deposition from the control run 
which serves as the denominator to compute the relative spread). Over regions with frequent 
precipitations, such as the extra tropical oceans, the noise is less significant, and the mean 
values are comprised between 20 and 30% for EMI, and 30-50% for MODEL. Both the noisy 
aspect and the mean values increase significantly with forecast time. The patterns of the 
absolute uncertainty change quite a lot in May 2021 as compared to February, with much 
higher values over Europe and Siberia for example, but the relative uncertainty show values 
in the same range as in February 2021. 
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Figure 24: Spread (left) in g/m²/yr and relative spread (right) of the MET, EMI, MODEL and ALL 
experiments for simulated sulfate wet deposition in February 2021, at 24h forecast time. 
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Figure 25: Spread (left) in g/m²/yr and relative spread (right) of the MET, EMI, MODEL and ALL 
experiments for simulated sulfate wet deposition in February 2021, at 120h forecast time. 
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Figure 26: Spread (left) in g/m²/yr and relative spread (right) of the MET, EMI, MODEL and ALL 
experiments for simulated sulfate wet deposition in May 2021, at 120h forecast time. 
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6.3 Organic matter 

 

6.3.1 Dry deposition 

 

The absolute and relative uncertainty of organic matter dry deposition are shown in Figures 
27, 28 and 29. Unlike sulfate, there are no oceanic sources of organic matter in IFS-COMPO, 
so the absolute spread values are generally higher over continents than over oceans, but this 
is not the case for relative spread. The absolute spread is much lower than that of sulfate, with 
maximum values over the main biomass burning and anthropogenic emission regions of 0.05 
to 0.1 g/m²/year. The relative spread is also lower than for sulfate dry deposition over oceans 
for all experiments except ALL, with values between 10 and 25% for MET, 5% for EMI, 30% 
for MODEL. For ALL, the values reach 40 to 50% over most of oceans, and generally lower 
values (30-50%) over continental areas. The increase with forecast time is quite significant in 
general, particularly for EMI over continental areas. The differences between February and 
May 2021 mainly concern the different biomass burning areas, with in particular a large fire 
event in Central Siberia. Apart from that, the relative spread values are in the same range 
between the two months. 
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Figure 27: Spread (left) in g/m²/yr and relative spread (right) of the MET, EMI, MODEL and ALL 
experiments for simulated organic matter dry deposition in February 2021, at 24h forecast time. 
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Figure 28: Spread (left) in g/m²/yr and relative spread (right) of the MET, EMI, MODEL and ALL 
experiments for simulated organic matter dry deposition in February 2021, at 120h forecast time. 
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Figure 29: Spread (left) in g/m²/yr and relative spread (right) of the MET, EMI, MODEL and ALL 
experiments for simulated organic matter dry deposition in May 2021, at 120h forecast time. 
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6.3.2 Wet deposition 

 

The absolute and relative uncertainty of organic wet deposition is shown in Figures 30, 31 and 
32. As for sulfate, the values are much higher than for dry deposition, and the biomass burning 
regions (Central Africa and Amazon in February, Siberia in May) are much more prominent, 
which is because the relative contribution of biomass burning event to the simulated organic 
matter burden (which drives wet deposition, together with precipitation fluxes) is higher than 
to the simulated organic matter surface concentration (which drives dry deposition, together 
with wind) as a large fraction of biomass burning emissions are injected at heights well above 
the surface. The maximum absolute uncertainty reaches about 0.5 to 1 g/m²/year above 
Equatorial Africa. As for sulfate, the relative spread is very noisy, with values similar to that of 
sulfate wet deposition. The increase of the spread with forecast time is significant with EMI, 
but less so for the other experiments. As for sulfate wet deposition, the patterns show some 
evolution in May 2021 as compared to February 2021, following the evolving biomass burning 
patterns, but the relative spread, very noisy, shows values in the same range. 
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Figure 30: Spread (left) in g/m²/yr and relative spread (right) of the MET, DUST, MODEL and ALL 
experiments for simulated organic matter wet deposition in February 2021, at 24h forecast time. 
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Figure 31: Spread (left) in g/m²/yr and relative spread (right) of the MET, DUST, MODEL and ALL 
experiments for simulated organic matter wet deposition in February 2021, at 120h forecast time. 
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Figure 32: Spread (left) in g/m²/yr and relative spread (right) of the MET, DUST, MODEL and ALL 
experiments for simulated organic matter wet deposition in May 2021, at 120h forecast time. 
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6.4 Nitric acid wet deposition 

 

Finally, Figures 33 and 34 show the absolute and relative spread of the nitric acid wet 
deposition fluxes at 24h forecast time, in February and May 2021. Source regions are quite 
prominent for the absolute spread for all experiments, with values between 0.2 and 1 
kg/m²/day over the main anthopogenic emissions regions, but the outflow concerns most of 
oceans with non negligible values as well, modulated by the occurrence of precipitations. The 
relative spread values of MET (20-35% over oceans) are higher than thos of EMI (5-20%), but 
lower than that of MODEL (30-50% over oceans) and ALL. There is a clear anti correlation 
between absolute and relative spread, with very high values of relative spread where the 
absolute spread is low, showing that those high values are an artifact created by low values 
of the denominator in the normalisation operation. 
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Figure 33: Spread (left) in kg/m²/day and relative spread (right) of the MET, EMI, MODEL and ALL 
experiments for simulated nitric acid wet deposition in February 2021, at 24h forecast time. 
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Figure 34: Spread (left) in kg/m²/day and relative spread (right) of the MET, EMI, MODEL and ALL 
experiments for simulated nitric acid wet deposition in May 2021, at 24h forecast time. 
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7 Conclusion 

In this report we showed quantitative estimates of the uncertainties of a selection of CAMS 
global deposition products with a cycle close to that of the current global operational cycle 
49R1, valid for 2021, which can give a qualitative assessment of uncertainties outside of 2021. 
The uncertainties vary a lot between species, forecast time, and the type of perturbations 
applied. The results also differ markedly between dry and wet deposition. 

All sources of error combined, the uncertainty of most of dry deposition products at 24h 
forecasts is often in the range of 20-40%. Emissions in general bring relatively less uncertainty 
than model and meteorological errors. This could also arise from the choice of perturbations 
applied to emissions. The uncertainty resulting from the combination of all factors 
(meteorology, emissions, model error) is much lower than the sum of the uncertainty of each 
of these factors taken independently. It also means that the uncertainty from a combination of 
factors cannot be derived from the uncertainties of each factor taken separately. This work 
also helps in understanding the sensitivity of the simulated deposition to the different inputs of 
the deposition parameterizations. 

These results were obtained with a first prototype of an IFS-COMPO ensemble. Diagnostics 
were developed to assess the skill of the ensemble as compared to observations and showed 
that all our ensemble simulations are under-dispersive: they fail to capture the whole variability 
of the observations, partly because of systematic model biases. This means that improving 
the skill of the model (debiasing, but also adding more degree of freedoms so as to better 
represent extremes) would allow for a lower uncertainty in the sense that fewer and or smaller 
perturbations would be needed to capture the observational variability  More work is needed 
in order to derive perturbations that have more impact; inspiration could be drawn from the 
meteorological ensemble and the singular vector approach could be used for atmospheric 
composition perturbations. 
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