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1 Executive Summary 

The Copernicus Atmosphere Monitoring Service (CAMS) currently offers a number of products 
to support decision and policy makers in regard to mitigation of air pollution at the European 
scale (https://policy.atmosphere.copernicus.eu/). These policy products provide information 
about the causes and main drivers of air pollution in European cities, so-called source 
allocation/attribution products, and their potential evolution in the future. Overall, better 
knowledge of the uncertainties in the sector/source attribution in the CAMS policy products 
may help policy makers to make more informed decisions when prioritizing measures for 
specific activity sectors. 

We have developed methodologies and uncertainty estimates directly relevant for the CAMS 
Policy Support Service. More specifically, we have:  

● Established uncertainty estimates in CAMS source receptor policy products related to 
emissions, model resolution and city area definition 

● Established the link to urban scale by developing an in-city variability/correction 
estimate for the local plus non-local contribution 

 

How sensitive is the local contribution (city to itself) to the geographical definition of 
the city area and the CTM model resolution? 

When designing air quality policies, it is important to know how much can be achieved by 
targeting local emissions (e.g., from a city planning perspective), and to what extent either 
national plans or international agreements should be prioritized. Therefore it is important to 
quantify the uncertainty in the local contribution product presented by CAMS. 

Our analysis shows that: 

● The calculated local contribution is very sensitive to both the model resolution and 
the geographical definition of the source & receptor regions, as well as to the 
averaging method employed within the receptor area. 

● Area-weighted local contributions (as in the current CAMS Policy Support Service) 
are systematically lower than population weighted local contributions (as in GAINS) 
which again are systematically lower than using the center grid cell as the receptor 
(similar to SHERPA & JRC Urban PM2.5 atlas, although they use the maximum 
concentration grid cell). Therefore, the current CAMS Policy Support Service 
systematically attributes a smaller responsibility to the cities for its own pollution - 
for PM2.5, PM10 and NO2 than other policy relevant products. For O3, the titration is 
highest when using the centre grid receptor and lowest for area weighted receptors. 

● Higher model resolution increases the modelled local contribution systematically, by 
a factor 2-3 for PM2.5, PM10 and NO2 (when increasing resolution from 0.3x0.2 
degree to 0.2x0.1 degree). For ozone, the titration by local city emissions is halved. 
The resolution of the current CTM models running for CAMS Policy Service was 
changed from coarser resolutions (different in each model) to 0.2x0.1 degree from 
1.1.2025, partly due to the results discussed here. Note, however, that the total 
concentrations (local plus non-local) are not consistently different due to resolution, 
except for ozone, where annual ozone is systematically lower in cities with high 
titration. 

 

From a policy perspective it is not clear which definitions of source and receptor areas should 
be used. On one hand one might argue that using the centre grid (or the grid with maximum 
concentration) as receptor is most relevant, as this would ensure that the sources which are 
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most important for the worst areas are targeted when planning mitigation actions - in line with 
achieving the limit values set in the Ambient Air Quality Directive. On the other hand, using 
the population weighted concentrations would be most relevant when policy is acting on 
reducing health effects overall. For the source area, it seems most reasonable to choose the 
core city area (the administrative area), as this is the area that city authorities can act on. In 
the end, the decisions should be made by the users, and the results discussed here are 
planned to be presented and discussed at several meetings and workshops during fall and 
winter, such as FAIRMODE and the next CAMS Policy User workshop. 

 

Link between regional and urban scales 

There have been repeated user requests in the CAMS Policy User Workshops that CAMS 
should deliver air quality information at finer spatial resolution, making the results more 
relevant for the urban scale. Linking regional and urban scales in the CAMS policy products 
will make these products more relevant for policy analysis such as the impact assessments 
being done at present for the Ambient Air Quality Directive, where exceedances in hot spot 
areas possibly will be driving policy. 

In the work undertaken for this deliverable, linkages between urban and regional scales have 
been made using a coupled regional and urban-scale modelling system (EMEP/uEMEP). 
First, we analysed the impact of resolution by comparing the coarser resolution results in the 
present source receptor service with the EMEP model (0.2x0.1 degrees) to fine resolution 
results from uEMEP at 250m for NO2 and PM2.5 for all the cities in the CAMS Policy Support 
Service. For the winter period of 2019, population-weighted mean NO2 concentrations 
increase on average by 40 %, but it varies importantly between cities, with some cities having 
close to no increase at all and others more than doubling. In most cities, the concentrations 
calculated at observational sites with uEMEP are closer to the observed mean, although the 
NO2 concentration is still underestimated on average after downscaling. Also, the spatial 
correlation between the stations is strongly improved by the downscaling for nearly all the 
cities, and on average it is improved from 0.26 to 0.64 (0.71) when using 250 m (50 m) 
resolution and compared to EEA stations. 

Furthermore, downscaling with uEMEP to 250 m can give important additional information on 
exposure, both by correcting the average population exposure and by accounting for the 
variability within the core city that gives rise to higher exposure for a subset of the population. 
For instance, the limit value for daily mean NO2 concentration (50 µg/m3) in the new European 
Ambient Air Quality Directive (AAQD) is exceeded much more frequently after downscaling, 
both in terms of the population-weighted mean (238% more days) and for the 95% percentile 
(219% more days). 

The relative increase in total PM2.5 concentration due to downscaling is smaller than for NO2 
for most cities, on average a 18 % increase. The city-mean bias is improved from -2.7 to -0.9 
(-0.6) µg/m3 for uEMEP with 250 m (50 m) resolution, but the spatial correlation is not 
systematically improved across the cities. Downscaling mainly has an impact on population-
weighted PM2.5 in only a smaller number of cities where residential heating has a very large 
contribution. The reason for the  smaller improvement of PM2.5 is most probably related to the 
quality of the gridded primary PM emissions (and specifically residential heating) as well as 
the proxy used to downscale those emissions at European scale. It has been shown that when 
using proxy data that are more closely linked to residential combustion, as available for 
Norway, the downscaling can give significant improvements. 

The number of days above the new AAQD limit value for daily mean PM2.5 (25 µg/m3) 
increases by (only) 31% for the city mean and by 52% for the 95th percentile. However, the 
very high values of daily mean PM2.5 above 50 µg/m3 (and even 100 µg/m3) occur much more 
frequently, particularly in the 95th percentile. Since the downscaling of PM2.5 does not 
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systematically improve performance, this increase in occurrence of very high concentrations 
might be less reliable. 

Secondly, we set out to develop an operational in-city variability/correction estimate that could 
account for the resolution issue (e.g. represent the effect of downscaling EMEP model results 
by uEMEP). Our analysis demonstrates that there is a correlation between the stability function 
and the variability in increase in traffic NOx contribution when downscaled by uEMEP. 
However, it is clear that stability alone cannot reproduce the time variation in the relative 
increase in NOx traffic contribution, and the relationship with stability is more of qualitative 
nature than a simple one-to-one dependency. This is not surprising, since other factors such 
as boundary layer height, wind speed and wind direction will also affect the downscaling. Due 
to the important time-variation in the effect of downscaling, it seems overly simplistic to apply 
a constant correction factor for each city at all times in the CAMS Policy Support service. 

However, it is manageable to run uEMEP downscaling for all the 80 cities included in CAMS 
Policy Service for the 4-day forecast horizon operationally. Based on the computation times 
of the runs of this study, all cities can be downscaled (to 250m) within 1 hour on a 
computational node with 96 parallel CPUs, each with 2 GB memory. If a coarser resolution of 
500 m or 1 km was used instead, the computational cost would be lower. 

 

Propagation of emission uncertainties into CAMS Policy Products 

The largest single source of uncertainty in air pollution forecasting (and source apportionment) 
is likely related to emissions. Although there have been several studies where emission 
uncertainties have been propagated into air quality forecasts/source apportionment, to our 
knowledge there has been no attempt to generate such information in near-real-time (NRT). 
Clearly, such information will be very valuable for interpreting the drivers behind episode 
situations, during the episode itself, supporting communication both to the public as well as to 
policy makers.  

Emission uncertainties have been developed in WP5 of CAMEO: uncertainties in total 
emissions per country and sector for NOx, SOx, NH3, NMVOC and PPM, uncertainties in 
gridded PPM emissions and uncertainties in the temporal disaggregation of emissions (per 
country, sector and component).  

Propagation of emission uncertainties have been investigated using two different CAMS Policy 
Support source allocation products for cities: i) the potential impact from country and city 
emissions and ii) the sector apportionment from the ACT metamodel. In principle, a similar 
analytic approach (tailored for CAMS operational applications) has been used for both of them, 
although there are some important differences. 

 

City & country contributions to City SR 

The propagation of emission uncertainties for the city and country to city SR service is done 
analytically for PM2.5. We take advantage of the local fraction (LF) calculations done with the 
EMEP MSC-W model, where all the derivatives (the change in PM2.5 due to changes in the 
different emissions per country, sector and component) are calculated. In addition, the city-to-
itself contribution is derived. Normally, the number of model runs that would have been needed 
if this should be done with Brute Force calculations, reducing one country, sector, and 
component at a time (30 (countries) x 5 (components) x 13 (sectors) = 1950 model runs) would 
be too large for this to be possible in an operational setting with time restrictions, but with LF 
this is computationally feasible . The uncertainties can be calculated by accounting for the 
uncertainties attributed to each of the contributions (from each country, sector, component 
plus the local contribution) to anthropogenic PM2.5 concentrations, plus the covariance terms 
(or the correlation in uncertainties between all the terms).  
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We have explored different correlation structures for the uncertainties (uncorrelated, 
correlated across the same sector in different countries and components, and fully correlated). 
In general, the correlation structure is important, with the uncertainties in the correlated case 
being a factor 2 higher than the uncorrelated case. 

Further, we have added the uncertainty related to the temporal breakdown of yearly emissions 
(per country and sector) by monthly, day-of-week, and hour-of-day time factors. Since we can 
not assume that the temporal uncertainty at time t manifests instantaneously into the 
concentration uncertainty at time t, different forms of aggregation methods have been 
investigated. Generally we find that the 24-hour rolling window, mean, and median yield 
relatively similar results. On the other hand, aggregating the maximum uncertainty results in 
the most noticeable change in the total prediction interval.  

We have evaluated the method’s performance across selected air pollution episodes in 
Europe during 2019. Overall, the approach produces plausible uncertainty estimates, offering 
potential value to users of CAMS Policy data products by quantifying the uncertainty 
associated. However, there are important limitations to keep in mind. Most critically, the 
underlying emissions’ uncertainties themselves are highly uncertain, often due to limited data, 
expert judgment, or assumptions in the original inventories. This adds a layer of ambiguity to 
any propagated uncertainty estimates. Second, the degree of correlation between emissions 
could significantly influence the results, but in practice, the true correlation structure is poorly 
understood and rarely quantified. 

 

Leveraging on the metamodel ACT 

A similar analytic methodology for propagating emission uncertainties to PM2.5 concentrations 
using the ACT metamodel has been explored, accounting for both uncertainties in temporal 
allocation factors and total annual emissions.  

The current implementation provides estimates of variability in PM2.5 concentrations over 
major European cities, but the methodology can be readily extended to all grid points within 
the modeling domain and to additional pollutants. The method is computationally efficient, 
requiring minimal processing time and resources, making it particularly well suited for potential 
operational deployment. 

Results indicate relatively large propagated errors, which are consistent with the substantial 
uncertainties associated with emissions—especially those related to temporal disaggregation 
factors. The residential sector is by far the most affected by temporal uncertainties, and 
consequently, the total propagated errors are highest in regions and periods where this sector 
dominates. 

Notable differences arise when comparing the results based on ACT to the method leveraging 
on LF in the EMEP MSC-W model. These discrepancies can be attributed to several factors. 
While both methods adopt an analytical approach to variance estimation, the results based on 
LF in the EMEP MSC-W model also account for some degree of correlation between emission 
sources. Further, ACT simplifies the uncertainties taken into account to only be a function of 
emission sectors, while the EMEP MSC-W model results takes into account uncertainties per 
country, sector and component. Finally, the two underlying models, ACT and the Local 
Fraction-based method, differ in the underlying model results for PM2.5 and the contributions 
themselves. 
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2 Introduction 

2.1 Background 

Monitoring the composition of the atmosphere is a key objective of the European Union’s 
flagship Space programme Copernicus, with the Copernicus Atmosphere Monitoring Service 
(CAMS) providing free and continuous data and information on atmospheric composition.  

The CAMS Service Evolution (CAMEO) project will enhance the quality and efficiency of the 
CAMS service and help CAMS to better respond to policy needs such as air pollution and 
greenhouse gases monitoring, the fulfilment of sustainable development goals, and 
sustainable and clean energy.  

CAMEO will help prepare CAMS for the uptake of forthcoming satellite data, including 
Sentinel-4, -5 and 3MI, and advance the aerosol and trace gas data assimilation methods and 
inversion capacity of the global and regional CAMS production systems.  

CAMEO will develop methods to provide uncertainty information about CAMS products, in 
particular for emissions, policy, solar radiation and deposition products in response to 
prominent requests from current CAMS users.  

CAMEO will contribute to the medium- to long-term evolution of the CAMS production systems 
and products.  

The transfer of developments from CAMEO into subsequent improvements of CAMS 
operational service elements is a main driver for the project and is the main pathway to impact 
for CAMEO.  

The CAMEO consortium, led by ECMWF, the entity entrusted to operate CAMS, includes 
several CAMS partners thus allowing CAMEO developments to be carried out directly within 
the CAMS production systems and facilitating the transition of CAMEO results to future 
upgrades of the CAMS service.  

This will maximise the impact and outcomes of CAMEO as it can make full use of the existing 
CAMS infrastructure for data sharing, data delivery and communication, thus supporting 
policymakers, business and citizens with enhanced atmospheric environmental information. 

 

 

2.2 Scope of this deliverable 

2.2.1 Objectives of this deliverables 

The work described in this deliverable has two objectives: 

● Establish uncertainty estimates in CAMS source receptor policy products related to 
emissions, model resolution and city area definition 

● Generate the link to urban scale by developing a variability/correction estimate for the 
local contribution 

 

2.2.2 Work performed in this deliverable 

In this deliverable the work as planned in the Description of Action (DoA, WP6 T6.2 and T6.3.3) 
was performed. 

 

2.2.3 Deviations and counter measures 

No deviations have been encountered. 
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2.2.4 CAMEO Project Partners: 

 

ECMWF EUROPEAN CENTRE FOR MEDIUM-RANGE WEATHER 
FORECASTS 

Met Norway METEOROLOGISK INSTITUTT 

BSC BARCELONA SUPERCOMPUTING CENTER-CENTRO 
NACIONAL DE SUPERCOMPUTACION 

KNMI KONINKLIJK NEDERLANDS METEOROLOGISCH INSTITUUT-
KNMi 

SMHI SVERIGES METEOROLOGISKA OCH HYDROLOGISKA 
INSTITUT 

BIRA-IASB INSTITUT ROYAL D'AERONOMIE SPATIALEDE 
BELGIQUE 

HYGEOS HYGEOS SARL 

FMI ILMATIETEEN LAITOS 

DLR DEUTSCHES ZENTRUM FUR LUFT - UND RAUMFAHRT EV 

ARMINES ASSOCIATION POUR LA RECHERCHE ET LE 
DEVELOPPEMENT DES METHODES ET PROCESSUS 
INDUSTRIELS 

CNRS CENTRE NATIONAL DE LA RECHERCHE SCIENTIFIQUE 
CNRS 

GRASP-SAS GENERALIZED RETRIEVAL OF ATMOSPHERE AND 
SURFACE PROPERTIES EN ABREGE GRASP 

CU UNIVERZITA KARLOVA 

CEA COMMISSARIAT A L ENERGIE ATOMIQUE ET AUX 
ENERGIES ALTERNATIVES 

MF METEO-FRANCE 

TNO NEDERLANDSE ORGANISATIE VOOR TOEGEPAST 
NATUURWETENSCHAPPELIJK ONDERZOEK TNO 

INERIS INSTITUT NATIONAL DE L ENVIRONNEMENT INDUSTRIEL 
ET DES RISQUES - INERIS 

IOS-PIB INSTYTUT OCHRONY SRODOWISKA - PANSTWOWY 
INSTYTUT BADAWCZY 

FZJ FORSCHUNGSZENTRUM JULICH GMBH 

AU AARHUS UNIVERSITET 

ENEA AGENZIA NAZIONALE PER LE NUOVE TECNOLOGIE, 
L'ENERGIA E LO SVILUPPO ECONOMICO SOSTENIBILE 
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3 Impact of geographical definition of city as source and receptor and 
recommendations for use in CAMS  

3.1 Introduction 

It is well known that the choices made in terms of geographical definition of sources and 
receptor areas (and indicators) for the cities have a large impact on the results in terms of how 
much of the pollution that the city itself is responsible for (Thunis et al., 2021).  

At present, the geographical city in the CAMS Policy support service is defined as the area 
corresponding to the 3x3 grid cells in 0.25x0.125 degree. Previously, the CTM models were 
run at this resolution, and although the models are now run on 0.2x0.1 degree for the CAMS 
Policy support service(twice the resolution as what is run in the CAMS regional forecast), the 
geographical definition is exactly the same (hereafter referred to as 3x3). The definition of the 
source area (the area for which the emissions are reduced or labelled) is the same as the 
receptor area (the area for which concentrations are averaged). The results on the CAMS 
Policy support service are presented as the area weighted concentrations in the city receptor. 

Several other definitions of city source and receptor areas are in use, for instance in the work 
done with GAINS for the Clean Air Outlook for EU (CAO4, 2025) or the Gothenburg Protocol, 
or with the SHERPA modelling tool (e.g. Thunis et al., 2021), see Table 4.1. 

In SHERPA (Thunis et al, 2018), the city source area definition is mostly FUA (Functional 
Urban Area). Thunis et al, 2018 explains that FUAs encompass both the city core and its 
commuting zone, providing a more comprehensive representation of urban emissions and 
their impacts on air quality. However, one might argue that using the core city as the source 
area is more relevant, as this is the area that city authorities have the power to act on, and 
measures can only be applied here. 

It has already been demonstrated in Thunis et al, 2021 that using FUA as source area gives 
a city contribution or responsibility  to PM2.5 levels (yearly levels) that is approximately twice 
as large as using core city as the source. In both cases the grid with the maximum 
concentration was chosen as the receptor, thus the impact from a larger area (FUA) is by 
definition larger than the impact of a smaller area (city core) to the same receptor. 

 

In our work we have investigated the sensitivity to different definitions of source and receptor 
areas of the total contribution as well as the city contribution (not only the max or centre grid 
cell). Furthermore, we extended the work to cover all of the species for which results are shown 
in the CAMS Policy Support Service: PM2.5, PM10, NO2 and O3. 

The main goal of this work has been to demonstrate how sensitive our results are to these 
choices and to recommend how this should be done in CAMS2_71. We have also investigated 
the impact of using different resolutions in the CAMS Policy Support Service. The results and 
recommendations from the work on resolution have already partly been used as basis for 
changes implemented in CAMS2_71 recently (i.e. all the models in the CAMS Policy Support 
Service are now running on 0.2x0.1 degree resolution). 
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Table 3.1 Overview of source and receptor definitions used in the CAMS Policy 
Support Service, JRC Urban Atlas (Thunis et al., 2017) and GAINS (Amann et al., 
2011) 

 City source definition City receptor definition 

CAMS Policy Support 3x3 grids (0.25x0.125 
degree)  

3x3 grids (0.25x0.125), 
area weighted 
concentration mean  

JRC PM2.5 Urban Atlas City Core, FUA, Urban 
Audit, 2021 

Grid with maximum 
concentration  

GAINS City Core, FUA (GHS 
Urban Centre Database, 
Florczyk et al., 2019 ) 

Population weighted 
concentration in core city 
(but only primary PM is 
considered for the city 
contribution to itself) 

 
3.2 Experimental setup 

The EMEP MSC-W model version rv5.0 has been used for work in this deliverable. The 
horizontal resolution is 0.2x0.1, with 20 vertical layers (the lowest with a height of 
approximately 50 meters), unless otherwise stated. 

Meteorology, emissions, boundary conditions and forest fires for 2019 have been used as 
input. Boundary conditions come from the CAMS global reanalysis (EAC4) for 2019 
(doi.org/10.24381/d58bbf47, Iness et al., 2019), read every 3 hours. Meteorological data is 
taken from the ECMWF-IFS operational 12 UTC meteorological forecasts for 2019 (ECMWF-
IFS 45r1 until June 11 and 46r1 from June 12th). Anthropogenic emissions are taken from the 
CAMS REG AP v6.1 emission data set. The forest fire emissions are taken from GFAS v1.2 
(Kaiser et al., 2012, doi.org/10.24381/a05253c7), while the model also includes climatological 
ocean DMS and soil-NOx emissions. For temporal distribution of the emissions for the year 
2019, the CAMS-REG-TEMPO v4.1 was used.  

 

All anthropogenic emissions were reduced city by city  (by 15%, all emissions at the same 
time) for all the 79 cities shown on the CAMS Policy User interface. The difference between 
the base run (full emissions) and the city reduction runs were used to quantify the city 
contribution by multiplying by 100/15. Other anthropogenic contributions were calculated by a 
model run where all anthropogenic emissions were reduced by 15%, and the city contribution 
was removed. The ‘rest’ contribution is defined as the base run minus the anthropogenic 
contributions. 

We have investigated using 3 different definitions for the source area: 

● Corresponding to 3x3 grid cells in 0.25x0.125 degree (the setup used in CAMS Policy 
Support Service when this work started) 

● Core city (Urban audit, 2021) - also used in the JRC Urban Atlas for PM2.5 
● Functional Urban area (Urban Audit, 2021) - also used in the JRC Urban Atlas for 

PM2.5) 

Furthermore, we analyzed results when using the following definitions of the receptor area 
(where core city area or FUA are chosen as source areas): 

● Area weighted core city 
● Area weighted FUA 

https://doi.org/10.24381/d58bbf47
https://doi.org/10.24381/a05253c7
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● Population weighted core city 
● Population weighted FUA 
● 1-grid (the geographical mid-point) 

 

The population data is Global Human Settlement Layer  (GHSL) 2020, described in Pesaresi 
et al, 2024. In addition, model runs with a selection of the definitions above have been run 
with a resolution of 0.3x0.2 in order to investigate the impact of resolution.  

 

3.3 Results 

3.3.1 Differences due to source area definition 

In SHERPA (Thunis et al, 2018), the city source area definition is mostly FUA. Thunis et al, 
2018 explains that FUAs encompass both the city core and its commuting zone, providing a 
more comprehensive representation of urban emissions and their impacts on air quality. 

One might argue that using the core city as the source area is more relevant, as this is the 
area that city authorities have the power to act on, and measures can only be applied here. 

It has already been demonstrated in Thunis et al, 2021 that using FUA as source area gives 
a city contribution or responsibility  to PM2.5 levels (yearly levels) that is approximately twice 
as large as using core city as the source. In both cases the grid with the maximum 
concentration was chosen as the receptor, thus the impact from a larger area (FUA) is by 
definition larger than the impact of a smaller area (city core) to the same receptor. 

In our work we have looked at different city source definitions, but we also apply other receptor 
definitions (not only the max or centre grid cell). Furthermore, we extended the work to cover 
all of the species for which results are shown in the CAMS Policy Support Service: PM2.5, PM10, 
NO2 and O3. 

Figure 3.1 shows box quantile diagrams summarizing the city contribution to PM2.5 (top) for 
the 79 cities investigated. Similar to Thunis et al, 2021, we find that the city contribution to 
PM2.5 is about 30% when the source area is FUA and the centre grid is receptor (assuming 
that in most cases the centre grid would be equal to the grid with highest concentrations). This 
is reduced to a bit less than 20% when the core city is used as a source area. For the source 
definition used in CAMS2_71 (3x3 grid), the relative city self contribution is more similar to 
using FUA (a mean of around 27%), probably because the 3x3 grid area is more similar in 
size to FUA than to the core city. When the source area and the receptor area are the same, 
the core city definition systematically gives lower local fraction - between 12-15 percent 
depending on whether results are area weighted or population weighted. 
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Figure 3.1 Box quantile diagrams summarizing the local contribution to PM2.5, NO2 , primary 
PM2.5 and O3. concentrations for the 79 European cities, For each of the 3 plots, the receptor 
is the same: from left: 1) area weighted receptor = source, 2) population weighted receptor = 
source and 3) centre grid cell. Within each plot, sources (and model resolution) vary: ‘3x3 14 
km’ means that the city source area is defined by 3x3 grid cells in 0.25x0.125 degree model 
resolution, ‘0.2x0.1 city’ means that core city area is the source and the model is run in 0.2x0.1 
degree resolution,  ‘0.3x0.2 city’ means that core city area is the source and the model is run 
in 0.3x0.2 degree resolution and ‘0.2x0.1 FUA’ means that FUA is the source area and the 
model is run in 0.2x0.1 degree resolution. The box borders show the 10th and 90th percentile 
and the two extremities are the max and min values. The horizontal line within the box 
represents the median. 

 

For NO2 (Figure 3.1, second row), the contribution from the city itself is substantially higher. 
When the city is defined by FUA, and the centre grid is the receptor, the median yearly 
contribution (of the 79 cities) is around 70%. For NO2 as for PM2.5, the results for the 3x3 grid 
are very similar to those of FUA to the centre grid. Using core city as the source area brings 
the city responsibility down to around 40%, and lowest for the area weighted receptor. 

For reference, we also show the results for primary PM2.5 (third row). Since this is a primary 
species, it shows very similar results as NO2 in terms of the local contribution from the city, 
e.g. 60% in the centre grid cell comes from FUA (against 70% for NO2) and 35% from core city 
(against 47% for NO2).  

For ozone (bottom row, Figure 3.1), the city contribution is always negative. FUA has the most 
negative impact in general, except for the area weighted results where the core city to core 
city is most negative. For the population weighted receptor results and for the centre grid 
receptor results, the contribution from the city is around - 8-12% (except for the coarser 
resolution runs, where titration is smaller). 

The appendix includes also figures for PM10, primary PM10 and the secondary species SO4, 
NO3 and NH4. 

 

In Figure 3.2 we show how the city contribution varies with time when using the core city 
(upper row) or FUA (bottom row) as source (example for Amsterdam March 2019). The 
receptor is either the same as the source (area weighted or population weighted) or the centre 
grid cell. Typically, the local contribution is higher for FUA than for core city, although in these 
plots it is mostly clear for the plots where the receptor is the centre grid cell. 

http://4.xx/
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Figure 3.2 Contribution from city, remote (all anthropogenic emissions outside the city) and 
rest (total minus all sources). From top to bottom: receptor area 1-grid-cell, area weighted, 
population weighted. Left 3 plots: Core city source area. Right 3 plots: FUA source area  

 

 

     3.3.2 Differences due to receptor area definition 

In the current CAMS Policy Support Service, the geographical definition of source and receptor 
is the same, and the results are provided as area weighted means.  

Thunis et al, 2021 argues that using the grid cell with highest concentration (the ‘worst case 
receptor’) as the receptor ensures that the model targets the exceedance zones most 
effectively, in line with EU Directive 2008/50/EC. In our work we have used the centre grid cell 
instead of the grid with the maximum concentration, since we were also looking at finer time 
resolution (e.g. daily), and it was impractical to sample the maximum concentration in grid 
when the selected grid was varying between time steps. However, with the resolution here 
(0.2x0.1 degree), the centre grid and the grid with maximum concentration is in most cases 
the same. 

Figure 3.3 compares results for local contribution to daily, monthly and yearly concentrations 
of PM2.5, using either the centre grid cell as receptor, the area weighted mean or the population 
weighted mean of the core city (the source is always core city). 
Clearly, local contributions are highest for the receptor being the centre grid cell and lowest 
for the area weighted mean, with the population weighted mean in between. This can also be 
seen from Figure 3.1, where FUA to the centre grid has a median local contribution of 30%, 
FUA to population weighted FUA 27% and FUA to area weighted FUA 18%. Similar numbers 
for core city as source is 18% (centre grid receptor), 16% (population weighted core city) and 
13% (area weighted core city). 
 
The box quantile diagram for NO2  (and PPM2.5) shows a similar picture, where the local 
fraction for FUA, core city or 3x3 to the receptor always follow centre grid > population 
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weighted> area weighted for the receptor. 
For ozone, the centre grid as a receptor always gives the largest negative impact of the city, 
with the population weighted results being quite similar. Area weighted receptor areas in 
general give smaller negative impacts of the city, probably because population density is 
highest near roads where NOx emissions are highest. 

 

Figure 3.3: Contribution from local (core city) emissions to concentrations of PM2.5 (ug/m3) in 
receptor areas, where the receptor is defined as 1 grid cell in the middle of the core city (1 
grid-cell), or as area weighted concentrations in the core city (area weighted) or population 
weighted concentrations in core city. All the model runs have been performed in 0.2x0.1 
degree resolution. 

 

3.3.3 Differences due to resolution 

When the work that is described in this deliverable started, the models for the CAMS Policy 
Service were run with a resolution of 0.25x0.125 degree (for the EMEP MSC-W model, for 
LOTOS EUROS 0.4x0.2 degree). Running the service with higher resolution costs much more 
CPU, and in addition it takes longer time (thus it is more difficult to comply with the restrictions 
on when results have to be ready on the CAMS Policy User interface every day). Therefore, 
we wanted to quantify how different the results would be in finer resolution to those running at 
the Service. We chose 0.2x0.1 degree as the finer resolution as a compromise between what 
is possible to achieve in practice (being able to provide results in time) and the need to improve 
the resolution. We compared this resolution (0.2x0.1) to 0.3x0.2, which was a compromise 
between the resolution run by the EMEP MSC-W model and LOTOS EUROS model. 

In Figure 3.4 we compare yearly average total concentrations for PM2.5 for all 79 cities at the 
two resolutions (and in 3.6 for daily, monthly and yearly resolutions). Concentrations are given 
both as the concentrations for the centre grid, area weighted concentrations for the core city 
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and population weighted concentrations for core city. Overall the results are rather similar (i.e. 
no systematic differences). In Figure 3.5 we show a similar plot for the local contribution to 
PM2.5 in the 79 cities. Clearly, resolution is much more important for the local contribution, 
where the 0.2x0.1 results show systematically higher contributions for the finer resolution. This 
is not surprising, as the lower resolution tends to smooth out the emissions in the core city. 
Because local contribution is an important aspect of the CAMS Policy Support Service, we 
recommended to CAMS2_71 to increase resolution in the upgrade that was done in the winter 
2024/2025, and the Service is now running with 0.2x0.1 degree resolution for all the products. 

Figures A2 to A7 in Appendix A show results for NO2 and O3. For NO2, the plots clearly show 
a similar picture as for PM2.5 - that the local contribution increases with resolution. For ozone, 
increasing resolution increases the titration, and the negative contributions of the city becomes 
larger (also described in the previous section and visualized in Figure 3.1). Figure A4 in the 
Appendix shows that for the cities with the most titration (and lowest yearly annual ozone 
concentration), for instance Rotterdam, Amsterdam and Antwerp, the highest resolution 
systematically gives lower ozone concentrations. This is the case for all cities up to yearly 
concentrations of about 55-60ug/m3. It might be that those effects are different in summer and 
winter (e.g. titration is largest in winter), but we have not looked further into such effects here. 

 

 

 
 

Fig 3.4: Total contribution/concentration (ug/m3) to PM2.5 concentrations in European cities 
(x-axis for 0.2x0.1 degree resolution, y-axis for 0.3x0.2 degree resolution). The city source 
areas are the core city area, but the receptor area is either the mid-grid cell, area weighted 
concentrations for the core city or population weighted concentrations for the core city. The 
size of the circles represent the total concentrations. 
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Figure 3.5: Local contribution (ug/m3) to PM2.5 concentrations in European cities (x-axis for 
0.2x0.1 degree resolution, y-axis for 0.3x0.2 degree resolution). The city source areas are 
the core city area, but the receptor area is either the mid-grid cell, area weighted 
concentrations for the core city or population weighted concentrations for the core city. The 
size of the circles represent the size of the local contribution. 
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Figure 3.6: Effect of resolution on local PM2.5 contributions (ug/m3). The source area is 
always the core city area, the receptor area is either the centre grid cell, area weighted 
concentrations in core city or population weighted areas in core city. Left column: Daily data 
for 2019, middle column: monthly data for 2019, Right column: Yearly average data. 

 
 

3.3.4 Conclusions 

 

We have investigated how sensitive the local contribution to the city is (i.e. how much of the 
pollution in the city that the city is responsible for itself) to the definition/choice of source and 
receptor area for the cities run in the CAMS Policy Support Service. We have also analyzed 
the sensitivity of the results to the resolution of the chemistry-transport model. We found that: 

 

● The calculated local contribution is very sensitive to both resolution and 
geographical definition of source & receptor region, as well as to the averaging 
method employed within the receptor area 

● Area weighted local contributions (as in the current CAMS Policy Support Service) 
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are systematically lower than population weighted local contributions (as in 
GAINS) which again are systematically lower than using the centre grid cell as the 
receptor (similar to SHERPA & JRC Urban PM2.5 atlas). Therefore, the current 
CAMS Policy Support Service systematically attributes a smaller responsibility to 
the cities for its own pollution - for PM2.5, PM10 and NO2 than other policy relevant 
products. For O3, the titration is highest when using the centre grid receptor and 
lowest for area weighted receptors. 

● Higher model resolution increases the modelled local contribution systematically, 
by a factor 2-3 for PM2.5, PM10 and NO2 (when increasing resolution from 0.3x0.2 
degree to 0.2x0.1 degree). For ozone, the titration by local city emissions is 
halved. However, the total concentrations are not consistently different due to 
resolution, except for ozone, where annual ozone is systematically lower in cities 
with high titration. 
 

From a policy perspective it is not clear which definitions of source and receptor that should 
be used. On one hand one might argue that using the centre grid (or the grid with maximum 
concentration) as receptor is most relevant, as this would ensure that the sources that are 
most important for the worst areas are targeted when planning mitigation actions - in line 
with achieving the limit values set in the Ambient Air Quality Directive. On the other hand, 
using the population weighted concentrations would be most relevant when policy is acting 
on reducing health effects overall. For the source area, it seems most reasonable to choose 
the core city area (the administrative area), as this is the area that city authorities can act 
on. On the other hand, in most cities there are a lot of emissions in the surrounding areas 
(FUA) that are contributing to pollution in the city, and knowledge about the size of this 
contribution would be useful. In the end the decisions should be made by the users, and 
the results discussed here are planned to be presented and discussed at several meetings 
and workshops during fall and winter, e.g. FAIRMODE and the next CAMS Policy User 
workshop. 
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4 Impact of fine scale resolution (down to urban scale) and development 
of local sub-grid scale correction  

4.1 Introduction 

In the CAMS Policy support service, the EMEP model simulates the emission and dispersion 
of air pollutants at a horizontal resolution of 0.2° x 0.1° (or approximately 12 km), and a vertical 
resolution of ca. 50 m near the surface (the lowest layer is 50 m thick). For long-transported 
air-pollution this resolution can be sufficient for capturing the resulting concentrations in a city. 
However, for locally emitted air pollution, the concentrations will vary on a much finer scale 
due to non-uniform emissions. Particularly for emissions close to ground level, such as from 
road traffic, there will be important horizontal gradients in concentrations within a city on much 
finer scales than the EMEP model on 0.2° x 0.1°  can resolve. Moreover, the limited vertical 
resolution results in the model immediately mixing low-level emissions throughout the first 50 
m, which can lead to underestimation of surface concentrations from sources emitted at 
ground level, as well as overestimation of elevated sources. 

In CAMEO tasks 6.2.2-6.2.3 we investigate how the small-scale variability in concentrations 
within a city, and therefore also in population exposure, could be better represented in the 
CAMS Policy support service. We apply the uEMEP model (Denby et al., 2020) to downscale 
the EMEP results to a spatial resolution of 250 m using proxy data, and combine this with 
population density data from the Global Human Settlement layer (Pesaresi et al., 2024) to 
calculate the exposure distribution (at home address). As metrics for the population exposure, 
we will mainly focus on the population-weighted mean concentration and on the 95-% 
percentile (i.e. the concentration exceeded at the home address of 5 % of the city population). 
As definition of the city, we will use the core city polygons defined for the Urban Audit 2021 
(as described in section 3.2). 

Investigations are done for NO2 and PM2.5. The focus is primarily on NO2, since this is the 
pollutant most dominated by local sources emitted near ground level, especially road traffic. 
Previous work also found that downscaling of NO2 with uEMEP gave important improvements 
in model performance at EEA stations, while improvements in PM were limited (Mu et al., 
2022). 

 

4.2 Experimental setup 

4.2.1 EMEP model 

The EMEP model is run from 1. January 2019 to 28. February 2019. The setup is the same 
as described in section 3.2, except that the CAMS emissions have been replaced with reported 
EMEP emissions for the year 2019 as used in the EMEP status report 1/2023. This was 
chosen due to a known problem with the gridding of NOx traffic emissions in the CAMS REG 
AP v6.1 emission dataset that leads to too little emissions being distributed to the cities, which 
was found by comparing to bottom-up emission inventories (personal communication with 
Jeroen Kuenen). Temporal profiles of emissions are not changed. 

The EMEP model also calculates and outputs local fractions, which track how much of the 
primary PM and NOx concentrations in the lowest model layer of each grid cell that was 
emitted in the cell itself and in each neighboring cell in each GNFR sector (Wind et al., 2020)1. 
This local fraction data is needed to avoid double-counting of the local contributions modelled 
by uEMEP. 

 
1This is the simplified local fractions method, which only tracks primary emissions from 
neighboring grid cells. A more complex method is used in chapter 5, which includes secondary 
species and sensitivities to chemical reactions. 



CAMEO  
 

D6.2   23 

Since the EMEP model in this setup is run with zero concentration initial conditions, the first 
week of the simulation is not used. The period considered for analysis is therefore 8. January 
– 28. February 2019. 

4.2.2 uEMEP model 

The urban EMEP (uEMEP) model (Denby et al., 2020) is a Gaussian plume model used to 
downscale EMEP model output to high resolution. The PM2.5 and NOx concentrations are split 
into a local contribution that is recalculated with high resolution, and a non-local (or 
background) concentration that is interpolated from the EMEP model. This calculation is done 
independently at each receptor location. So although the downscaling can be done for a grid 
(mapping), it can also be done for individual locations, which can be used for validation at 
measurement sites with a reduced computational cost. This is used to evaluate the impact of 
using higher resolution for dispersion of traffic emissions, as described in section 4.2.3. 

The first step is to generate fine-resolution emissions of PM2.5 and NOx. In the setup used in 
this study, uEMEP does this by distributing hourly gridded emission data outputted by the 
EMEP model to a finer resolution grid using proxies. The proxy data is open street maps for 
road traffic (GNFR-F), population density for residential heating (GNRF-C), and AIS data for 
ship emissions (GNFR-G), all available on 250 m resolution (Table 4.1). The details of these 
proxy data are explained in Mu et al. (2022). However, an important difference from the 
approach in Mu et al. (2022) is that downscaling is done for hourly emissions rather than 
annual total emissions. We have also used a more recent dataset for population density.  

Sector Proxy Emission 
height (m) 

Comment 

C - Residential 
combustion 

Population density year 2020 from 
the Global Human Settlement 
dataset (Pesaresi et al., 2024) 

15 ± 10 Downloaded at 3 arcsec 
resolution and aggregated to a 
250 m grid 

F - Road 
transport 

Open street map (OpenStreetMap 
contributors) 

1 ± 1 Weighting of emissions using 
road type according to Mu et al. 
(2022) 

G - Shipping AIS based emission data provided 
by the Coastal authorities of Norway 
(Kystverket, 2020) 

45 ± 20 Emission vertical profile based 
on STEAM 
emission model (Jalkanen et al., 
2009) 

Table 4.1: Proxy data used to downscale emission from each of the three sectors, and the emission 
height used in Gaussian plume calculations for each sector (± indicates the initial spread of the plume). 
Based on Table 1 in Denby et al. (2024). 

The second step is to disperse these fine-scale emissions. The dispersion is modelled as 
individual Gaussian plumes between the receptor and each emission grid-cell within a 2x2 
EMEP-cell area around it2. Emission height is constant for each sector and assumed at 1 m 
for traffic, 15 m for residential heating at 45 m for shipping, with some initial spread (Table 
4.1). Receptor height is 2 m for gridded calculations and 3 m for calculation at measurement 
stations. For details of the Gaussian plume calculation, see section 3 in Denby et al. (2020). 

The third step is to calculate the contribution from everything that is not downscaled, which is 
referred to as “non-local”. This includes all sources further away than the 2x2 EMEP-cell area 
around the receptor, in addition to all sources in GNFR sectors that are not downscaled, as 
well as natural sources. The non-local contribution is calculated by subtracting the local 
fraction data outputted by EMEP from the total EMEP concentration in the lowest model layer, 

 
2 This local area is always centered at the receptor. When the receptor is not at the centre of an EMEP 
grid cell, the 2x2 cell area will cover fractional parts of the actual EMEP grid cells. 
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after interpolating (area-weighted) to the receptor location.  For details, see section 2.4 in 
Denby et al. (2020). 

No chemistry is included in the local dispersion calculations, except for the NO2-O3 interaction, 
which is modelled using the weighted timescale approach documented in section 3.4 of Denby 
et al. (2020). This means that the uEMEP model will modify the contribution from primary PM, 
while the contribution from secondary PM remains unchanged and is included in the 
“nonlocal”. 

 

4.2.3 Calculation areas 

uEMEP is run for the core city of each of the 79 cities shown on the CAMS Policy support 
service. For studying population exposure statistics in a city, downscaling is done for a 
receptor grid of 250 m resolution. The projection used for the grid is the European ETRS89-
LAEA projection (EPSG: 3035), commonly used for European mapping. For each city, a 
rectangular area covering the full core city polygon is downscaled, but when calculating 
statistics, only the 250-m cells whose centre is inside the polygon are included. Population-
weighted mean and percentiles of population exposure are calculated by weighting the 
concentration in each 250m x 250m grid-cell within the core city polygon with the GHS 
population density data. This high-resolution population sampling is also done when statistics 
of the original EMEP concentration are calculated (i.e. EMEP grids partly within a core city 
polygon will be weighted with the population of that cell that is within the polygon). 

For model evaluation against EEA stations (see section 4.5), downscaling is calculated for the 
locations of each station. For these station calculations, we also perform separate uEMEP 
calculations where the Open street map is sampled at 50 m resolution rather than 250 m. This 
strongly increases computational cost, but may improve the representation of traffic stations 
in particular. The residential heating and shipping are modelled at 250 m resolution in both 
cases. The validation against low-cost PM2.5 sensors (section 4.6) is instead done by 
interpolating uEMEP results from the mapping runs at 250 m resolution, since these stations 
are more numerous and it was decided to include them in this study at a late stage of the work. 

4.3 Average effect of downscaling 

4.3.1 NO2 

Figure 4.1a shows the population-weighted mean NO2 concentration averaged over the 52-
day period in each core city. It also shows how much of the NO2 concentration is attributed to 
the local downscaled emissions from each of the three downscaled sectors and to the nonlocal 
contribution3. In most cities, the downscaled emissions contribute more than half the NO2 
concentration. Road traffic is the most important of these in most cities, though residential 
combustion also gives an important contribution. Shipping is important only in a smaller 
number of cities. 

Figure 4.1b shows the relative increase in average NO2 concentration due to downscaling. 
Averaged over all cities, the increase is 40 %, but it varies importantly between cities, with 
some cities having close to no increase at all and others more than doubling. Figure 4.1b also 
shows the relative increase in NOx, which is significantly higher than the increase in NO2 for 
some cities. This is due to the nonlinearity of NO2 with more NOx already present, less of the 
emitted NO will react with ozone to NO2. The differences in increase in NO2 and NOx can be 

 
3 The NO2 source contributions are calculated from the NOx source contributions in the following way: 
The nonlocal NO2 contribution is calculated by photostationary approximation after removing the local 
NOx contribution from the downscaled sectors. Then the local NO2 contributions are calculated by 
repeating chemistry calculations for when one sector is removed at a time, finally normalising the local 
contributions so the sum of local and nonlocal NO2 contributions add to the total downscaled NO2. 
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much larger than shown in the figure when considering areas and time periods with particularly 
high NOx concentrations. 

In Figure 4.1c-e we investigate the increase of each of the downscaled sectors individually. 
For this we consider NOx rather than NO2. This is because the sector-wise increase in NO2 is 
not trivial to define, due to interaction between the sectors from nonlinear ozone chemistry, 
while NOx can be easily split into sectors since NOx is linear in uEMEP. We compare the 
downscaled contributions calculated by uEMEP to the original local EMEP contributions. 
These EMEP contributions are what uEMEP replaces, and they are calculated by spatial 
interpolation of the local fraction data. Averaged over all cities, the traffic contribution is 
increased by 154 %, the residential heating by 96 %, while shipping is reduced by 59 %. For 
shipping, we have excluded cities where the shipping contribution in EMEP is less than 0.5 
µg/m3, to avoid these insignificant cases to influence the city mean. The combined effect of 
downscaling the three sectors is an increase of 54 % in total NOx concentration, which 
becomes a 40 % increase in total NO2 concentration. Although the general pattern of an 
increase in traffic and residential heating contribution and a decrease in shipping contribution 
is consistent among the 79 cities, there is a lot of variation in the magnitude of the increase. 

These differences between cities in the effect of downscaling can have several reasons. First, 
the correlation between population density and downscaled concentrations could vary 
between cities, especially for traffic whose proxy is not population density. If we redo the 
comparison for a simple area-mean over the city instead of population-weighted mean, the 
average increase from downscaling is smaller (traffic +113 %, heating +32 %, shipping -67 ­%, 
total NO2 +27 %), but most of the differences between cities remain (not shown). 

Second, the different cities could have different meteorological conditions affecting the 
dispersion of pollution, in particular the vertical stability, whose effect is better captured in 
uEMEP than in EMEP due to the vertical resolution (see examples in section 4.4). 

Third, the subsampling of EMEP grid cells partly within the city polygon can itself lead to higher 
average concentrations in the cell after downscaling, since in such grid cells the emissions 
can be expected to be mostly in the fraction of the cell that is inside the core city, leading to 
higher concentrations there than in the cell average. This effect might also be different 
between cities, depending on the size of the city and the gradient of emissions at its boundary. 
Many of the cities with the largest increase in local contributions are indeed small core cities, 
where these boundary effects might be an important factor. 

 

4.3.2 PM2.5 

Figure 4.2 shows the same statistics of downscaling for PM2.5 as Figure 4.1 shows for NO2. 
For PM2.5 it is simpler to distinguish the local sector contributions since nonlinear chemistry is 
not involved in the downscaling and local contributions here only include primary PM. Most 
cities either have very little local contribution or it is dominated by residential heating (Figure 
4.2a). The relative increase in total PM2.5 concentration due to downscaling is smaller than for 
NO2for most cities, on average a 18 % increase, even though the relative increase in the traffic 
and residential heating sectors are on average 155 % and 114 %, respectively. Downscaling 
mainly has an impact on population-weighted PM2.5 in a smaller number of cities where 
residential heating gives a very large contribution. 
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Figure 4.1: (a) Population-weighted mean NO2 concentration in each core city after 
downscaling to 250 m resolution, averaged over the period 8.1.2019 – 28.2.2019, and 
indicating the relative importance of each downscaled local sector and the contribution that is 
not downscaled (nonlocal). (b) Relative increase due to downscaling in population-weighted 
mean of time-mean NO2 and NOx concentration. (c)-(e): Relative increase in downscaled local 
sector contributions to NOx (population-weighted mean of time-mean), relative to spatially 
interpolated EMEP local fractions. For shipping, only cities with at least 0.5 µg/m3 original 
contribution are shown. 



CAMEO  
 

D6.2   27 

 

Figure 4.2: (a) Population-weighted mean PM2.5 concentration in each core city after 
downscaling to 250 m resolution, averaged over the period 8.1.2019 – 28.2.2019, and 
indicating the relative importance of each downscaled local sector and the contribution that is 
not downscaled (nonlocal). (b) Relative increase due to downscaling in population-weighted 
mean of time-mean PM2.5 concentration. (c)-(e) Relative increase in downscaled local sector 
contributions to PM2.5(population-weighted mean of time-mean), relative to spatially 
interpolated EMEP local fractions. For shipping, only cities with at least 0.5 µg/m3 original 
contribution are shown. 
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4.4 Time series examples for NO2 

Figure 4.3 shows an example of the downscaling of NO2 for a 10-day period in Berlin, showing 
a map of time-averaged concentration before and after downscaling. Most of the core city is 
covered by only four EMEP model grid cells, so the EMEP model can only capture the large-
scale variability, with higher concentrations in the city centre than in its peripheries. Much more 
details can be seen in the downscaled concentrations, particularly elevated concentrations 
near the main roads. While the highest concentration in the EMEP model is only around 28 
µg/m3, in uEMEP some areas have a concentration as high as 45 µg/m3. 

Figure 4.4a shows the time series of population-weighted mean concentration in the same 
period, before and after downscaling, as well as the 5-95 % range in population exposure 
(shaded). Observational time series from EEA stations (see section 4.5) are super-imposed, 
color-coded for station type. Since in particular traffic stations are located in the highest 
concentrations, the maximum value from uEMEP (among populated 250m x 250m cells) is 
also shown. 

First, we can see that although the population-weighted mean concentration is higher in 
uEMEP than in EMEP on average, there are also many times where they are very similar to 
each other, or even lower in uEMEP. The 95-% percentile is also higher in uEMEP than EMEP 
in many cases, especially when the mean is higher, though there are also periods when it is 
similar to the 95-% percentile from EMEP (which normally corresponds to the EMEP grid with 
highest concentration). The city-max concentration from uEMEP, however, is usually much 
higher than uEMEP 95-% percentile. This can be because the areas of strongly elevated NO2 
concentration along the main roads, though very clearly visible in Figure 4.3b, may not 
constitute as much as 5 % of the population. 

Even with the downscaling, it seems the model underestimates the NO2 concentration in this 
particular episode. This is also found from direct comparison to observations at station 
locations (not shown). This is likely not only due to local sources, though, since there is also 
underestimation at night, indicating that background concentrations are also too low. 

Figure 4.4b further investigates the population-weighted mean NO2 concentration and its 
increase by downscaling, and splits the downscaled concentration into contributions from 
downscaled sources and the nonlocal (similar to Figure 4.1a). As noted above, the 
concentration is strongly increased by downscaling in some periods, while in others it is close 
to what we get directly from the EMEP model. The increase from downscaling seems to occur 
especially during the afternoon, when also the contribution from local road traffic peaks. There 
is also a lot of variability from day to day, with some days having very little effect of downscaling 
and other days having a large increase. Residential heating contribution also has a peak 
slightly later in the evening, which might also contribute to the larger effect of downscaling. 

One possible reason for the strong time-variability in the effect of downscaling is the stability. 
When the boundary layer is stable, pollution emitted near the ground will mix vertically more 
slowly than when it is unstable. While EMEP will immediately mix the emissions throughout 
the lowest layer (~50 m thick), uEMEP accounts for the mixing taking longer when it is stable 
through the Gaussian plume formula, which would give rise to higher surface concentrations 
in uEMEP than EMEP in stable conditions. To explore the stability as an explanation, Figure 
4.4c shows the uEMEP-to-EMEP ratio in population-weighted mean contribution to NOx from 
road traffic (i.e. a value of 1 means they are the same), and super-imposed is the stability 
function for heat as outputted by EMEP. The stability function is bigger than 1 in stable 
conditions and smaller than 1 in unstable conditions. We see there is a clear relationship 
between the two, with the large increases in NOx traffic contribution corresponding to the most 
stable conditions. The sharp increases in the ratio in the afternoon coincides with the boundary 
layer transitioning from stable to unstable. In the first few days of the period, the stability was 
not so strong, and then downscaling only weakly increased the NOx traffic contribution, 
sometimes even decreasing it. The squared correlation coefficient between the stability 
function and the NOx traffic relative increase in the time series shown has a coefficient of 
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determination of r2=0.60. However, the relationship is not perfect. For example, there is a 
tendency for stability to remain high late in the evening, while the NOx traffic increase goes 
down. This is also when the traffic emissions drop, so one possible explanation is that local 
NOx emitted earlier in the evening is still present in EMEP; this contribution from earlier cannot 
be included in uEMEP since the Gaussian plumes are in steady-state with no memory of 
emissions at previous times. 

 

 

Figure 4.3: NO2 concentration averaged over the period 10.–19. February 2019 in Berlin: (a) 
Original concentration in EMEP with no downscaling. (b) Downscaled concentrations from 
uEMEP at 250 m resolution. The core city boundaries are indicated by the black polygon. 
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Figure 4.4: Modelled NO2 concentration in Berlin core city hour-by-hour 10.–19. Feb 2019: (a) 
Population-weighted mean (thick line) and 5-95% percentile range of population exposure 
(color segments) in EMEP (blue) and uEMEP (red), as well as the uEMEP populated receptor 
grid-cell with the highest concentration (dashed red line). Super-imposed are measurement 
stations (thin dashed lines) and median of stations (dots). (b) Population-weighted mean 
concentration in uEMEP, split into contributions from each downscaled sector and from 
nonlocal, as well as population-weighted mean concentration in EMEP (dashed line). (c) The 
ratio of EMEP and uEMEP NOx contribution (population-mean) from local road traffic (black) 
super-imposed on the time series of the stability function at 10 m calculated in the EMEP 
model (blue). 
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Figure 4.5: Same as Figure 4.4, but for Lisbon core city. 

Figure 4.5 shows the same time period for Lisbon. Here we also see that the model tends to 
be lower than the observed NO2 concentrations, but after downscaling, the population-
weighted mean concentration becomes significantly higher in several of the afternoon peaks 
that can be seen in the station observation median. The uEMEP max concentration also peaks 
relatively close to the station with highest observation (although it could be different locations 
inside the core city). Also for Lisbon, traffic is the most important of the three downscaled 
sectors, although residential heating and shipping sometimes contributes significantly, too. 
Just as in Berlin, the increase in NOx traffic contribution from downscaling varies importantly 
in time and peaks in the afternoon at the same time as the strong increase in stability (Figure 
4.5c). In this case r2=0.34, so not as strong a relationship as in Berlin. 
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Figure 4.6: Same as Figure 4.4, but for Sofia core city. 

A third example is shown in Figure 4.6, for the core city of Sofia, which is one of the cities with 
the largest increase in NO2 from downscaling. In this case, the uEMEP concentration is higher 
than the EMEP concentration for the whole period, but the increase is very variable in time 
also here. The peaks in uEMEP concentration appear to correspond well with the peaks in 
median observed concentration (Figure 4.6a). The variability in the increase in traffic NOx 
contribution also has an association with stability in this case (Figure 4.6c). 

Looking at all the 79 cities, we can see a similar association between the stability function and 
the variability in increase in traffic NOx in most of them (not shown). However, it is clear that 
stability alone cannot reproduce the time variation in the relative increase in NOx traffic 
contribution, and the relationship with stability is more of qualitative nature than a simple one-
to-one dependency. This is not surprising, since other factors such as boundary layer height, 
wind speed and wind direction will also affect the downscaling. Due to the important time-
variation in the effect of downscaling, it seems overly simplistic to apply a constant correction 
factor for each city at all times in the CAMS Policy support service. 

4.5 Model evaluation against EEA stations 

The concentrations are evaluated against measurement data from the validated and reported 
dataset for 2019, received from the EEA in early 2024. All stations located within the 79 core 
cities are included for validation if they have a data coverage of at least 75 % in the period 
8.1.2019 – 28.2.2019. This gives a total of 491 stations for NO2 and 163 for PM2.5. However, 
many cities have a small number of stations. For a more robust validation of city spread, only 
cities with at least 5 stations, including at least 1 traffic station and 1 background station, are 
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included. This leaves 30 cities for NO2 and 12 for PM2.5. For each hour with measurements, 
the measured concentration is compared to the corresponding modelled concentration at the 
station, both before downscaling (surface concentration output from EMEP) and after 
downscaling (uEMEP). 

4.5.1 NO2 

Figure 4.7 shows the validation of NO2. Figure 4.7b shows that uEMEP gives an increase in 
the mean NO2 concentration in most cities, which in most cases brings the concentration 
closer to the observed mean, although the NO2 concentration is still underestimated in 
average after downscaling. The average bias goes from -12.0 µg/m3 in EMEP to -5.3 (-4.4) 
µg/m3 in uEMEP run at 250 m (50 m). 

Figure 4.7c shows the variability between stations within each city, quantified as the difference 
between the station with highest and lowest period-mean concentration. In mean over the 
cities, the observed spread is 32.8 µg/m3, which is almost as high as the observed average 
(38.3 µg/m3), so variability within the cities is clearly important. In most cities, the observed 
variability is larger than in the model, even after downscaling. However, the spatial correlation 
between the stations (Figure 4.7d) is strongly improved by the downscaling for nearly all the 
cities, and on average it is improved from 0.26 to 0.64 (0.71) when using 250 m (50 m) 
resolution. It is as expected that the 50 m resolution improves the representation of traffic 
stations relative to 250 m resolution. Note that the clear outlier Zargoza, where spatial 
correlation is negative, has rather small spatial spread as well. 

Figure 4.7e shows the station mean of temporal correlation in each city, which is an indication 
of whether the higher and lower concentrations occur at the right times at each station. The 
temporal correlation is not as strongly affected by the downscaling as the spatial correlation. 
It slightly improves on average, from 0.60 in EMEP to 0.66 in uEMEP, although in a few cities 
the temporal correlation gets worse after downscaling. 

Finally, Figure 4.7f shows the station mean of temporal root-mean-square error (RMSE) 
averaged over all stations, which should give an overall indication of how well the model is 
able to represent the measurement time series at the stations. In most cities, the RMSE is 
lower (and therefore better) in uEMEP compared to EMEP, and in many cases even a ~20 % 
reduction. Averaged over the cities, the RMSE drops from 18.7 µg/m3 in EMEP to 16.0 (15.7) 
µg/m3 in uEMEP at 250 m (50 m) resolution. 

For air quality it is in particular the periods with highest concentrations that are important to 
model correctly. Therefore, the validation is repeated after selecting only the 20 % of the time 
period that has the highest NO2 concentrations. This selection is done using the median of 
observations from all stations in each city every hour and ranking the hours by this observed 
median. Thus, the data selection is different for each city and may contain isolated hours from 
different days. 75 % data coverage is checked after the selection of the period with 20 % 
highest concentrations, which means the set of stations included for validation could be slightly 
different from the validation of the full dataset. 

Figure 4.8 shows the resulting validation for this data subset. The observed mean is much 
higher in this subset, on average at 68.3 µg/m3 compared to 38.3 µg/m3 for the full period. 
The average bias is -28.0 µg/m3 in EMEP and -11.5 (-10.2) µg/m3 in uEMEP at 250 m (50 m) 
resolution (Figure 4.8b), which is a similar relative reduction in the bias as for the full dataset 
(Figure 4.7b). Spatial correlation (Figure 4.8d) is similar for this data subset as it was for the 
full dataset, with important improvements from downscaling. Temporal correlation (Figure 
4.8e) is much worse for the subset of highest concentrations compared to the full subset (both 
in EMEP and uEMEP), dropping from around 0.6 to 0.3 on average. This is probably because 
the variability is less dominated by the diurnal cycle of traffic emissions when only the 20 % 
hours with highest concentration are considered, and we can expect the diurnal cycle to be 
better captured in the model than the variability between peak concentrations at different days. 
We still see that the downscaling improves the temporal correlation on average, though again 
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there are several cities where it does not. But while for the full dataset, downscaling only 
weakly impacted temporal correlation (Figure 4.7e), the downscaling has a much stronger 
effect on the temporal correlation for the 20 % hours of worst concentration (Figure 4.8e). This 
indicates that the downscaling correctly captures an aspect of the time variability in the highest 
concentrations in some cities, while in others it does not. Given the strong relationship found 
in section 4.4 between stability and the increase from downscaling, we suspect that the reason 
for the differences in temporal correlation between cities could be related to whether 
meteorological conditions and in particular the stability are correctly represented. 

Finally, the temporal RMSE is decreased in most cities also in the 20 % highest concentration 
subset, on average from 32.4 µg/m3 in EMEP to 25.1 (24.6) µg/m3 in uEMEP at 250 m (50 
m) resolution (Figure 4.8e). 

In conclusion, the downscaling of NO2 importantly improves the bias and spatial correlation in 
most of the 30 cities considered for validation, both for the full dataset and for the 20 % of 
hours with highest concentration. Temporal correlation also improves on average, but the 
improvement is not as large and there are also some cities where it gets worse. Using 50 m 
resolution for downscaling road traffic instead of 250 m further improves both bias and spatial 
correlation, while it has very little effect on the temporal correlation. 

4.5.2 PM2.5 

Figure 4.9 (left panels) shows the validation for PM2.5 against EEA stations for the full period. 
Only 12 cities have a sufficient number of observations. The city-mean bias is improved from 
-2.7 to -0.9 (-0.6) µg/m3 for uEMEP with 250 m (50 m) resolution (b), but the spatial correlation 
is not systematically improved across the cities (d). On average, it improves from 0.05 in 
EMEP to 0.16 (0.19) in uEMEP using 250 m (50 m) resolution, but there are several cities 
where the spatial correlation gets worse after downscaling. The spatial correlation also is quite 
low even after downscaling and even negative in multiple cities. However, in contrast to NO2, 
the observed spatial spread in the cities is only 6.1 µg/m3 on average (c), which is relatively 
small compared to the average concentration (18.0 µg/m3). 

As for NO2, the validation of PM2.5 is repeated for the 20 % of the hours with the highest 
observed median PM2.5 concentration in each city (Figure 4.9, right panels). For this subset, 
the average bias is -8.3 µg/m3 before downscaling and improves to -5.7 (-5.3) µg/m3 with 
downscaling to 250 m (50 m), while spatial correlation goes from 0.06 to 0.19 (0.20), but again 
with many cities where spatial correlation gets worse. The temporal correlation and RMSE are 
both getting worse with downscaling in both the full dataset and the 20 % highest concentration 
subperiod (Figure 4.9e-f). 

Since residential heating is the most important downscaled contribution for PM2.5, these results 
indicate that the population density is not a very good proxy for distributing these emissions in 
many of the cities. Better results might be obtained if more appropriate proxies for these 
emissions are found. Using annual uEMEP calculations for all of Europe, Mu et al. (2022) 
tested altering the proxy for residential heating in uEMEP by using a nonlinear relationship 
between population density and emissions or combining it with data on building density, but 
neither significantly improved the spatial correlation. They did, however, show that proxy data 
more closely linked to combustion, as available for Norway, can give significant improvements. 

In addition, the performance is also limited by the original gridding of emissions. Since this 
study uses EMEP emissions, the emissions are mainly as reported by the countries 
themselves, although specifically for PM emissions from sector C (residential combustion) the 
emissions instead come from estimates by TNO for some countries, in the cases where the 
reported emissions are considered to not take into account the  condensables. This is 
documented in the EMEP status report 1/2023, chapter 3.3. The gridding of the emissions 
from TNO are typically also based on proxies such as population density or wood availability, 
and may not account for factors such as regulation on combustion in cities. For example, PMF 
data in Barcelona show that contribution from biomass burning is overestimated by the models 
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there (Deliverable D6.3 of CAMEO). Note, however, that for our study here the Spanish 
emissions for GNFR C for PM2.5 are reported by Spain and not taken from TNO. 

 

Figure 4.7: Validation of NO2 concentration for period 8.1.2019 – 28.2.2019, for original EMEP 
concentrations and downscaled with uEMEP at 250 m and 50 m resolution. NO2 is validated 
against EEA stations for cities with at least 5 total stations, 1 traffic station and 1 background 
station with >75 % data coverage: (a) The number of stations, (b) the mean concentration over 
the period averaged over the stations, (c) difference in mean concentration between highest 
and lowest station, (d) the spatial correlation (among stations in a city) of time-mean 
concentration, (e) the temporal correlation calculated at each station and then averaged over 
the stations, and (f) the temporal root-mean-square error calculated at each station and then 
averaged over the stations. To the far right is shown the mean over the shown cities. 
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Figure 4.8: Same as Figure 4.7, but only for the 20 % of the hours in the 52-day period that 
have the highest NO2 concentration (from median of the station observations). 
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Figure 4.9: Same as Figures 4.7-4.8, but for PM2.5, showing the full dataset to the left and the 
20 % of hours with highest PM2.5 concentration to the right. 

4.6 Model evaluation against low-cost PM2.5 sensors 

The number of EEA stations available for PM2.5 is relatively limited. As an additional way of 
evaluating the PM2.5 variability within the cities, we used a recently published dataset of low-
cost sensors (LCS) for PM2.5 (Hassani et al., 2025). This dataset contains several thousand 
sensors from all over Europe, though mostly in Germany and surrounding countries. We have 
only used data with the highest level of quality flags, which means a relatively small fraction 
of the sensors have 75 % data coverage for the 52-day period. Only these stations have been 
considered. Just as for the validation against EEA stations, we also consider the hours with 
20 % highest concentrations (from median of LCS available at each hour) in each city as a 
subset. This results in 15 cities with at least 10 sensors with 75 % data coverage for the whole 
dataset, and 13 cities for the subset of 20 % highest concentrations. For these cities, the 
gridded uEMEP concentrations at 250 m have been interpolated to the sensor locations and 
compared to the LCS data. Results are shown in Figure 4.10. 
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Similar to what we found in the EEA station validation, PM2.5validated against the LCS data is 
not systematically improved by the downscaling. Spatial correlation does not systematically 
improve with downscaling, and the temporal correlation and RMSE both get worse on average. 

 

Figure 4.10: Validation of PM2.5 concentration against Low-Cost sensors with 75 % data 
coverage in period 8. Jan – 28. Feb 2019 (left), and for the 20 % of this period with the highest 
observed PM2.5 concentration in each city (from median of LCS observations) (right). Showing 
only cities with at least 10 stations with sufficient data coverage. Blue bars show original 
concentrations from the EMEP model, red bars after downscaling to 250 m resolution. 

4.7 Downscaling effect on population exposure 

Having established that NO2 concentrations are improved from the downscaling, we will 
quantify how much the downscaling increases the calculated levels of population exposure. 
This was already shown in Figure 4.3, but only for a time-average of population-weighted 
mean. Figure 4.11a-b shows histograms of the occurrence of daily mean NO2 concentrations, 
for the population-weighted mean and for the 95-% percentile, respectively, in all cities before 
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and after downscaling. There is a shift towards higher values both for the population-weighted 
mean and the 95%-percentile, and the distributions get wider. The limit value for daily mean 
NO2 concentration defined in the new European Ambient Air Quality Directive is at 50 µg/m3, 
and this limit is exceeded much more frequently after downscaling, both for the population-
weighted mean (238 % more days) and for the 95-% percentile (219 % more days). There are 
also much fewer days with concentrations below 10 µg/m3 or even 20 µg/m3. 

For completeness, we also show the same histograms for PM2.5 in Figure 10c-d. Also PM2.5is 
shifted towards higher concentrations, though not as much as NO2. The number of days above 
the new limit value for daily mean PM2.5 of 25 µg/m3 increases by (only) 31 % for the city mean 
and by 52 % for the 95-% percentile. However, the very high values of daily mean PM2.5 above 
50 µg/m3 (and even 100 µg/m3) occur much more frequently, particularly in the 95%-
percentile. Since the downscaling of PM2.5 does not systematically improve performance, this 
increase in occurrence of very high concentrations might not be so reliable. 

 

Figure 4.11: Distribution of daily mean concentrations during the 52-day period, comparing 
before (EMEP) and after downscaling to 250 m (uEMEP), plotted as the number of days that 
fall within each 5 µg/m3 bin, summed over all cities: (a) Population-weighted mean NOx 
concentration (b) 95%-percentile of population exposure to NOx. (c) and (d) show the same 
for PM2.5. NB: There are 2 days in (b) and 8 days in (d) that exceed the 150 µg/m3 cut-off. 

4.8 Recommendations for the CAMS Policy support service 

We found that downscaling with uEMEP to 250 m can give important additional information 
on exposure to the local NO2 from road traffic, both by correcting the average population 
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exposure and by accounting for the variability within the core city that gives rise to higher 
exposure for a subset of the population, here quantified as the 95%-percentile. For PM2.5, the 
current proxy used for residential heating is not sufficiently accurate that downscaling PM2.5 
gives significant improvement, and/or the gridding of primary PM in the original 0.1x0.1 degree 
emission data set is not of high enough quality. 

The relative increase from downscaling in traffic contribution was shown to be very variable in 
time, due to changing meteorological conditions, so a constant factor does not seem 
appropriate. One option is to run the uEMEP model operationally for the 79 cities and use its 
outputs to calculate the population-weighted mean and 95-% percentile of exposure for each 
hour, as done in this study. The computational cost of uEMEP increases strongly with 
resolution, but at 250 m resolution it is manageable to run downscaling of all the cities for the 
4-day forecast horizon within the CAMS2_71 Service as it is set up at present. This would 
need to be done after the Baseline EMEP calculation has completed, whose output must 
include the local fractions. Based on the computation times of the runs of this study, all cities 
can then be run within 1 hour on a computational node with 96 parallel CPUs, each with 2 GB 
memory. If a coarser resolution of 500 m or 1 km was used instead, the computational cost 
would be lower. 

A possible visualization of the resolution effect could be based on Figure 4.4a, but removing 
the 5-95% percentile range for EMEP. 

Ideally, the modified population-weighted mean concentration due to downscaling should also 
appear in the “City & Country impacts” page. It might seem natural that the increase in mean 
concentration due to downscaling should be attributed in full to the city's contribution to itself. 
However, it is actually not so straightforward, since the downscaling domain is not defined by 
the city boundary, but instead a moving window of size 2x2 EMEP cells around every receptor 
grid cell. 2x2 EMEP cells correspond approximately to a 30x30 km area. Depending on the 
location of the receptor, a smaller or larger part of this area is outside the core city. Sources 
outside the core city should not be attributed to the city. However, uEMEP has newly 
implemented a feature where the contribution from inside vs. outside a polygon can be 
separately quantified. This feature was not used in the runs done for this study, but it could be 
used to separate the increase from downscaling into an increase from sources inside the core 
city polygon vs. outside. The increase due to sources outside the core city could be attributed 
to the “Rest of country” source. This still has two important limitations, since the downscaling 
categorizes sources by GNFR sector and not by country: 1) If a neighboring country is close 
enough to the city that emission sources from that country falls inside the downscaling domain, 
any increase from such sources due to downscaling will be attributed to “Rest of country” 
instead. 2) International shipping is shown as a separate source in the service; however, 
uEMEP does not distinguish domestic and international shipping, so changes in contributions 
from international shipping due to downscaling will instead be attributed to the city’s 
contribution to itself or “Rest of country”, depending on the emission location. 
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5 Propagation of emission uncertainties into the city SR service 
and potential for operational implementation  

5.1 Introduction 

Providing uncertainty quantification (UQ) estimates alongside air quality forecasts is crucial to 
maximizing their utility. Uncertainties arise from, among others, uncertainties in emissions, 
meteorology, model uncertainties, resolution of the model and emissions, and city definitions. 
Here we focus on the propagation of uncertainties in emissions and temporal profiles. 

Commonly employed methods for propagating uncertainty through chemical transport models 
(CTMs) include single parameter perturbations, ensemble methods and Monte Carlo 
techniques (e.g., Sax and Isakov, 2003, Aleksankina et al., 2018), and emulator (also known 
as “surrogate”) modeling approaches (e.g., Aleksankina et al., 2019, Guo et al., 2024). 

Monte Carlo techniques are common tools for analyzing uncertainties arising from complex 
models. In such an approach with a CTM, one could sample from the prescribed emissions 
distributions, use these samples as input to run the model, and estimate the uncertainty of the 
prediction by considering the prediction spread across the ensemble. Hence, each sample in 
the input space yields a corresponding model run. The compute requirements of modern 
CTMs yield this method computationally prohibitive in many applications, and in particular 
unsuitable for operational air quality forecasts, such as those provided by CAMS. 

Emulator models serve as another common alternative to either estimate or propagate 
uncertainties through complex models. They can be employed either alongside Monte Carlo 
techniques or as a substitute for them (e.g., Conibear et al., 2021). Used with Monte Carlo 
techniques, the aim is that cheaper evaluation of the emulators allows efficient exploration of 
the parameter space and that this yields a more complete understanding of the prediction 
uncertainty. Using emulator models alone relies on using an emulator model which provides 
a more complete understanding of the predictive distribution, and assuming this predictive 
distribution is representative of the uncertainty in the original CTM. 

The most mathematically complete description of prediction uncertainty available would be 
the entire predictive distribution. In some cases, this is obtainable if one has a formula 
describing a system and they wish to propagate uncertainty through this formula. CTMs are 
highly complex, and therefore no single formula is available to describe the entire system. This 
does not mean, however, that analytical methods to propagate emissions uncertainties are 
not available. For example, previous work by Dunker et al. (2022) has combined analytical 
methods with Monte Carlo techniques to estimate and analyze uncertainties in ozone 
predictions arising from biogenic and anthropogenic emissions. Given a method to 
differentiate the model, analytical approximations for uncertainty propagation may be used. 

Utilizing analytical methods is preferable for a few reasons. For one, compared to emulator 
model-based techniques, we avoid an additional modeling step because we do not need to 
train another model. Furthermore, we do not need to make an additional assumption that our 
emulator model correctly characterizes both the first-order and higher-order properties of the 
predictive distribution. Analytical methods can be implemented efficiently because they 
provide a formulaic representation of the uncertainty. Moreover, they are relatively explainable 
and easy to understand, with complete information available regarding where sources of 
uncertainty arise from, and how they interact. Finally, using analytical methods for uncertainty 
propagation allow modelers the ability to make modeling choices, balancing accounting for 
important sources of uncertainty and computational efficiency. Modelers have complete 
control in this aspect, and therefore can gain a more complete understanding of how emissions 
uncertainties result in forecast uncertainties. 

The objective of this chapter is to explore an approach to propagate (yearly country, sector, 
emitted component and temporal) emission uncertainties through the EMEP MSC-W 
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(European Monitoring and Evaluation Programme Meteorological Synthesizing Centre-West) 
model with direct applications to operational air quality forecasts provided by CAMS. 

 

5.2 Emissions Uncertainties 

Emissions uncertainties are provided by Work Package 5 in CAMEO, and described in the 
deliverables Super and Kuenen [2023] and Super et al. [2024]. Uncertainties are provided as 
yearly estimates in terms of absolute and relative standard deviations, per country, sector, 
emitted component, and in the case of primary particulate matter (PPM), as a gridded data 
product matching the model resolution of 0.1° x 0.1°. Following the recommendations of the 
data providers we work exclusively with the relative standard deviations4. A general first 
analysis can be made by cross-referencing the contribution and uncertainty data. 

Table 5.1: The mean relative standard deviations of primary PM2.5 emissions for GNFR sectors 
across countries. 

Sector Mean Relative 
Standard Deviation 

PublicPower 0.75 

Industry 0.39 

OtherStationaryComb 0.33 

Fugitives 0.47 

Solvents 0.56 

RoadTransport 0.08 

Shipping 0.35 

Aviation 0.31 

OffRoad 0.24 

Waste 0.93 

AgriLivestock 0.21 

AgriOther 0.21 

 

Emissions uncertainties at the sector level are inherently relevant insofar as each sector 
contributes to anthropogenic air pollution. The following figure provides an illustration for how 

 
4 The relative standard deviation, also known as the coefficient of variation, is a way to express the 
standard deviation as a percentage of the mean. It provides a sense of the variability in the emissions 
relative to the average. 
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each sector proportionally contributes to the anthropogenic part of PM2.5 concentrations 
across seasons in 2019 (calculated with the Local Fraction (LF) methodology). However, the 
relative sector contribution to PM2.5 concentrations varies widely from country to country5. We 
additionally may  aggregate across the entire year, considering maps of the relative 
contribution from each emission sector to PM2.5 concentrations to get a sense of how different 
sectors proportionally contribute at different locations, shown in Figure 5.2. Seasonal versions 
of these plots are available in Appendix B. Generally we find that the anthropogenic part of 
PM2.5 in  summer is less certain in a relative sense than winter. Part of the reason for this is 
that industry and public power have higher average relative standard deviations and contribute 
more in the summer. Another potentially contributing factor is that road transport contributes 
relatively much more in the winter than in summer. Compared to other sectors, road transport 
is very certain with a sector standard deviation of 0.08 (the lowest of all sectors). This has the 
effect of exacerbating the difference between winter and summer to make winter appear 
relatively more certain. Agricultural livestock also has a relatively low relative standard 
deviation (0.21) and contributes much more in the winter, potentially exacerbating the 
seasonal differences. 

 

 

Figure 5.1: Mean fractional contribution to the anthropogenic part of the PM2.5 concentrations 
across GNFR sectors during seasons in 2019 over the EMEP domain (both sea and land). 

 

 

 

 

 

 

 

 
5 A table of countries from highest to lowest relative standard deviations is provided in the 
appendix. 
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Figure 5.2:  The contribution fraction from each sector to anthropogenic PM2.5 concentrations 
in 2019. Scale is from 10% - 40%. 

 

 

5.3 An Analytical Method for Propagation of Emission and Temporal 
Uncertainty 

We combine the emission uncertainties provided by TNO in conjunction with sensibilities to 
emission changes obtained using the Local Fraction method (LF) (Wind et al., 2020, 2025). 
Using these as inputs, we propagate the uncertainty forward using a probabilistic approach 
based on a local expansion of the EMEP model as a first-order Taylor series. The key insight 
to this method is that the local fractions output can be seen as the constituent terms in the 
Taylor expansion of the pollutant concentrations expressed as functions of emissions. In 
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conjunction with the emissions uncertainties, we derived uncertainties in the EMEP output 
using the variance formula (Cramér, 1999, Ku et al., 1966). 

Let 𝓛 represent the set of countries, 𝓢 the set of GNFR sectors, and 𝓔 the set of emitted 
components. Specifically, the set of emitted components considered is: 

𝓔  = {𝑃𝑃𝑀, 𝑆𝑂ₓ, 𝑉𝑂𝐶, 𝑁𝑂ₓ, 𝑁𝐻₃}  

For each combination of country, sector, and emitted component (i.e., for all 𝒄 ∈  𝓛 ×  𝓢 ×  𝓔 , 
denoted as 𝓒), we have estimates for both the emission mean (E𝒄) and the relative standard 
deviation (σ𝒄

rel), where: σ𝒄
rel = σ𝒄 / E𝒄.6 

Let 𝐶 represent the pollutant concentration. We write the LF output in the following way for 
ease of notation: 

 

The Local Fractions relate the amplitude of small variations of emissions to the resulting 
variations of pollutant concentrations. We define the total air pollution accounted for as the 
sum of the contributions over all 𝒄 ∈  𝓒: 

 

We can express the uncertainty in Ptot by accounting for the uncertainties attributed to each of 
the contributions. 

 

Using the properties of variance, this can be expanded in the following manner. 

       

Let us consider the terms on the right-hand side of this equation. The first term can be written 
as  

   

where 

          

Mathematical formalism for what the LF output represents can be found in (Wind and van 
Caspel, 2025, Equations 3, 4). This final approximation is known entirely as it is the product 
of the LF output and the relative standard deviation for 𝒄 ∈ 𝓒.  

 
6 Note that while we do have absolute standard deviations provided by TNO, they refer to a specific 
emissions data set, and therefore are not directly transferable to other emissions data sets. We 
therefore assume that, while the absolute emissions and standard deviations can change between the 
provided data and the emissions data used in our EMEP model runs, the relative standard deviations 
do not change, and so we directly work with just the relative standard deviations. 
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Inspecting the second term in the sum on the right-hand side of the variance formula, we can 
momentarily consider the covariance. We can decompose the formula for the covariance 

 

where 𝜌(·,·) is the correlation. The correlations are approximated using the formulation above. 
For the correlation term, we have some options for simplifying assumptions. 

1. Uncorrelated case: Assume ρ(LF𝒄 , LF𝒄’) = 0 for all 𝒄, 𝒄’ ∈  𝓒. 

2. Fully correlated case: Assume ρ(LF𝒄 , LF𝒄’) = 1 for all 𝒄, 𝒄’ ∈  𝓒. 
3. Sector correlated case: 

 

Each of these correlation cases relates to specific assumptions about emission correlations. 
In the first case, assuming zero correlation implies that no emission uncertainty is informative 
in predicting any other emissions uncertainties. For example, the uncertainty in emissions 
produced by residential heating in Norway would tell us nothing about the uncertainty in 
emissions from the same source in Sweden, despite the fact that these countries are closely 
geographically related and likely experience similar meteorological conditions driving these 
emissions. In the second case, we consider the exact opposite scenario, which is also very 
unrealistic. In such a situation, the random variable describing emissions uncertainty from 
Fugitives in Montenegro would be 100% correlated, with the random variable describing 
emissions uncertainty from residential heating in Sweden. Likewise for all other combinations 
of uncertainty in emissions in all countries, sectors, and emitted components. This gives a 
maximalist approximation on the variance. Finally, in case three, we consider emissions fully 
correlated within sectors, but not across sectors. For example, uncertainty in NOx emissions 
from the transportation sector in the Netherlands would be perfectly correlated with uncertainty 
in NOx emissions in Hungary, but uncertainty in emissions from NOx in the Dutch transportation 
sector would be uncorrelated emissions from all other sectors in the Netherlands. In this 
sense, while we perhaps overestimate the correlation within sectors, we aim that this 
approximation can compensate for some of the missing correlations within countries. 

There are some computational considerations pertaining to these cases, which make them 
attractive approximations to consider. In case 1, the variances simply add. This places the 
most conservative estimate on the prediction variance we consider and can be interpreted as 
a lower bound. In case 2, this assumption actually allows us to simply add the standard 
deviations7. Case three, where we consider all sectors fully correlated with themselves and 
assume emissions uncertainties between sectors are uncorrelated, represents one 
compromise between these two extremes. In the sector-correlated case, it suffices to add the 
squares of the sums of the standard deviation within each sector, which also yields 
computational benefits. 

One important consideration is how assumptions about correlations affect our results. In the 
uncorrelated case, a well-known statistical principle8 justifies the use of a normal (Gaussian) 
error distribution. However, this justification may break down when inputs to the model exhibit 
correlation. When sectors are independent of each other, it's standard to assume that model 
errors also follow a normal distribution. However, if sectors are correlated, this assumption 
might not hold as well. We do not assume strong correlations between sectors, so it's still 
reasonable to use the normal distribution as an approximation even when combining data from 
thirteen sectors. We keep this assumption throughout the analysis because it keeps the 
methods consistent and enables closed-form analytical solutions. This approach also allows 

 
7  This is justified because a² +2ab + b² = (a + b)², which implies that the standard deviation 
can be written simply in terms of a + b. 
8 The Central Limit Theorem justifies the use of a Gaussian error distribution. 
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us to calculate prediction intervals, which help us compare how well the model performs under 
different correlation assumptions. 

More realistic correlation structures were also considered. Based on the experience creating 
the uncertainty data product in CAMEO Work Package 5, TNO provided a first approximation 
of how the uncertainties might be correlated. Table 5.2 presents these suggestions. 
Implementation of such a correlation structure is significantly more complicated, however, 
from both purely a technical and computational perspective. One of the key features of the 
aforementioned correlation structures is their computational benefit, which makes them not 
only computationally feasible but potentially also suitable for production services. As we 
consider larger and more complex correlation structures, their implementation can quickly 
become computationally prohibitive. For this reason, we do not implement this suggested 
correlation structure, however this could be attempted in the future. 

 

Table 5.2 Proposed correlation structure by TNO for emissions uncertainties (how much errors 
in e.g. GNFR A in one country is correlated with errors in GNFR A in another country). 
Percentages represent the share of each sector to total emissions. 

GNFR GNFR Name PM2.5 NOX NMVOC SOX NH3 

Expected 

corr.  in 

error 

ranges Explanation 

A Power plants 2% 14% 1% 29% 0% 0 Point sources, reporting by facility in many countries 

B Industry 13% 20% 9% 42% 1% 0.25 

Point sources, reporting by facility in many countries - but 

also more diffuse industrial sources, which could be using 

similar (Guidebook) methods across countries 

C Residential 64% 12% 15% 19% 1% 0.5 

Mix between countries using their own methodology vs. 

countries using the EMEP/EEA Guidebook; take an 

average 

D Fugitives 1% 0% 6% 9% 0% 0.25 
Small sector, different subsectors and methods for 

estimating emissions, likely low correlations 

E 
Solvents/product 

use 2% 0% 38% 0% 2% 0.75 

Very uncertain category, many countries use default 

methods. Also countries may incorporate (parts of) 

methods from other countries for themselves 

F Road transport 9% 42% 7% 0% 1% 0.75 

Many countries use COPERT (~75% of EU countries), 

some use other methods (e.g., HBEFA), but these are also 

compared sometimes. So likely correlations do exist to a 

large extent, but not fully. 

G Shipping (inland) 0% 1% 0% 0% 0% 0 
This concerns only inland shipping where correlations are 

probably quite low since countries have their own methods. 

H Aviation 0% 1% 0% 0% 0% 1 

Expect full correlations since most approaches rely on the 

ICAO data and Eurocontrol approach. So all using the 

same type of data in general. 

I Other mobile 2% 9% 2% 0% 0% 0.25 
Methods differ quite a lot between countries, also many 

subsectors included here with all their own characteristics. 

J Waste 4% 0% 1% 0% 2% 0.5 
Also different subsectors. Not very important for AQ, so 

probably not that relevant anyhow. 

K 
Agriculture 

livestock 2% 0% 18% 0% 42% 0.75 

Assume largely using the Guidebook (most countries) with 

exception of some countries with important agriculture 

sector (e.g. NL, DE, FR) 

L Agriculture other 1% 0% 3% 0% 51% 0.25 
Methods differ quite a lot between countries, also many 

subsectors included here with all their own characteristics. 

G Shipping (sea)      1 
Generally one method is used across all sea regions, so full 

correlation 
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5.4 Total Uncertainty Arising from Anthropogenic Emissions Uncertainty 
assuming Sector Correlation 

It will be useful to write explicitly the total uncertainty arising from anthropogenic emissions 
assuming the sector correlated case. This correlation structure offers some realism while also 
facilitating computation benefits, which we explicitly write below. 

Fix time 𝑡. Let Ptot(· , 𝑡) represent the spatial field of total accounted for air pollution at time 𝑡. 
Then we have: 

 

Assuming that 𝑠 is uncorrelated with 𝑠′, for all 𝑠, 𝑠′ ∈ 𝓢, 

         

Assuming full correlation within sector 𝑠 across countries: 

 

Assuming full correlation within sector 𝑠 across emitted components: 

 

 

 

5.5 Maps Exploring Correlation Structures 

We now explore these various correlation structures as both yearly averages and across 
seasons to determine how their associated assumptions yield various relative uncertainty 
maps. Doing so allows modelers to gauge approximate ranges and their plausibility. We now 
present maps of the relative standard deviations induced by the three considered correlation 
structures. 

Generally speaking, the uncorrelated case yields uncertainty maps which are considered too 
small. This has the implication that a prediction interval data product derived from a predictive 
distribution assuming no correlation between the inputs would underestimate the actual 
uncertainty and not adequately capture the spread in observations. Considering the other 
extreme, assuming full correlation between all inputs yields uncertainty maps which are 
generally too high. This would result in prediction intervals which are too large, and not provide 
meaningful uncertainties alongside air quality forecasts. Assuming purely sector correlation 
balances these extremes, in a manner which yields more realistic uncertainty maps, which are 
more consistent with the spread in observations and domain expertise. 
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Figure 5.3: Maps of the yearly relative standard deviation of PM2.5 in 2019 from anthropogenic 
emissions across different assumed correlation structures. The scale ranges from 10% - 40%. 

5.6 Formulas for Estimating Local Contribution Uncertainty Using Gridded 
Uncertainty Data 

In CAMS, it is often useful to consider the local contribution to air pollution concentrations, for 
example of  PM2.5 (defined here as the contribution from a city to itself). It is therefore important 
to also consider the uncertainty in the local contribution to the concentrations. To motivate with 
an example, we will consider a specific air pollution episode beginning 16th of February 2019 
in Bratislava. We will explore this example in more detail later in this chapter, however for now 
we simply use it as a concrete example to illustrate how we can account for uncertainty arising 
from local emissions.  

Let 𝐶𝑃𝑀2.5 represent the surface concentration of PM2.5. Furthermore, let 𝐷 represent the 

domain. In this example we have that |𝐷|  =  400 × 260. For fixed 𝐱 ∈ 𝐷  and time 𝑡, let 
𝐶𝑃𝑀2.5(𝐱, 𝑡) be the surface concentration of PM2.5 at the given spatio-temporal coordinates. We 

may hold out one of these coordinates as generic, in which case a · will represent that this is 

to be taken over all values of the held out coordinate. For example, 𝐶𝑃𝑀2.5(·, 𝑡)  ∈ ℝ |𝐷| is the 
spatial field at time 𝑡, whereas 𝐶𝑃𝑀2.5(𝐱,·) represents the time series of concentrations of PM2.5 

at location 𝐱.  

Let 𝐵 denote a set of cities. Fix 𝑏 =  𝐵𝑟𝑎𝑡𝑖𝑠𝑙𝑎𝑣𝑎 ∈ 𝐵. Let 𝐦𝑏 ∈ ℝ |𝐷| denote the city core mask 
for Bratislava (see definition of city in Chapter 3.1). Each entry of this array is the fraction of 
each grid cell which is defined as belonging to Bratislava by the core-city mask definition. For 
a given point in time 𝑡, the background concentration in Bratislava is given by  

. 

We would like to express the uncertainty (i.e., the variance) of this quantity, 𝜎𝑏 ²(𝑡). However, 
we do not have uncertainties for all contributing sources. Rather, we write the concentration 
in the following way 

, 

where the closure term 𝜖(·, 𝑡) is what remains between all anthropogenic sources accounted 
for as defined above and the total concentration. It therefore accounts for natural sources and 
nonlinear chemistry. We lack uncertainties for this, and therefore we only consider the 
uncertainty in Ptot.  
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where 𝐿𝐹(𝑏, 𝑡, 𝑠) is the contribution from sector 𝑠 to the concentration of PM2.5. Specifically 

. 

Alternatively we could write 

. 

Assuming full correlation within sector 𝑠 across emitted components, we can compute their 
variance as the sum 

  

where each of 𝜎(𝐱, 𝑡, 𝑠, 𝑆𝑙𝑜𝑣𝑎𝑘𝑖𝑎, 𝑒) is specific to the emitted component. We make this choice 
because we have a gridded data product specifically available for primary PM (PPM), but not 
other emitted components, and it is desirable to take full advantage of this gridded data 
product, particularly when considering the uncertainty arising from local emissions.  

The Local Fractions methodology also provides us a way to determine for each grid cell 𝐱, the 
neighboring cells (within a window), the amount of air pollution which comes from that 
neighboring cell. The collection of all neighboring cells, we will call a “Local Fractions Window”, 
and denote as 𝐿𝐹𝑊(𝐱). It is important to note, however, that not all air pollution which reaches 

location 𝐱 comes from 𝐿𝐹𝑊(𝐱), rather only a fraction. The fraction of air pollution at location 𝐱 
which comes from the 𝑘th neighbouring cell is denoted as 𝑙𝑓𝑘(𝐱).  

For all emitted components except for primary PM, we calculate 𝜎(𝐱, 𝑡, 𝑠, 𝑆𝑙𝑜𝑣𝑎𝑘𝑖𝑎, 𝑒) the same 
way as before, by multiplying the Local Fractions output for that country, sector, emitted 
component and multiplying by its associated relative standard deviation. In the case of PPM, 
however, we wish to use the gridded uncertainty data product for all neighboring cells in 
𝐿𝐹𝑊(𝐱) for the proportion of air pollution which reaches 𝐱 from 𝐿𝐹𝑊(𝐱), and balance that with 
the standard definition for all other emitted components for the remaining proportion. For 
simplicity, we assume these two sources are uncorrelated, and add their variances. The 
complete definition for 𝜎(𝐱, 𝑡, 𝑠, 𝑆𝑙𝑜𝑣𝑎𝑘𝑖𝑎, 𝑒) can therefore be given as 

 

 

 



CAMEO  
 

D6.2   52 

 

Note that to use the gridded PPM data product in each Local Fraction Window, we need to 
account for the spatial correlation between the cells. This correlation is accounted for by the 
spatial covariance function, which is specified to be an exponential. The range parameter 
(here 𝐿𝑆𝑙𝑜𝑣𝑎𝑘𝑖𝑎) is provided for each country, so that the aggregated gridded uncertainties for 
PPM match the country sector level uncertainties provided in Super and Kuenen [2023]. The 
procedure by which this is accomplished is described in Super et al. [2024]. The distance 
metric used in the great-circle distance, although on such small scales such as in our 
application, this is essentially the same as the Euclidean distance. 

 

5.7 Uncertainties in Emission Temporal Profiles 

Emissions are reported by countries per sector at an annual frequency. As a part of their work 
for CAMS, TNO and BSC distribute these emissions throughout time and space for each 
country, such that the accumulated emissions are equal to the annual reported values. 
Typically this involves the use of “time factors” in the CTMs, which represent the fraction of 
the emissions that should be assigned to each category. Commonly employed time factors 
are monthly, day-of-week, and hour-of-day time factors. Interpolation and reweighting and 
procedures are then applied to remove large discontinuities in the time factor series, and to 
ensure consistency.  

We would additionally like to account for the uncertainty which arises from how the emissions 
are distributed throughout time. Uncertainties in temporal profiles have been produced and 
are described in Guevara et al. (2024). According to the documentation, these temporal 
profiles are pertinent for characterizing the uncertainty associated with how modelers may 
implement them within their modeling frameworks. 

We account for this source of uncertainty in the following manner. Consider the time factor for 
a given point in time at an hourly resolution, for a given pollutant, country, and sector. Ignoring 
an additional interpolation step, the time factors used are as follows: 

∑ 𝑓𝑀 =  12, ∑ 𝑓𝑊 =  7, ∑ 𝑓𝐻 =  24.  

The data accompanying deliverable 5.1 described in Guevara et al. [2024] provides estimates 
of the means and standard deviations for each of these summands. Let 𝑓𝑀𝑓𝑊𝑓𝐻 ≕  𝑓𝑡 . 
Assuming independence of the time factors and applying properties of expectation and 
variance, we have that 𝔼𝑓𝑡 = 𝔼𝑓𝑀𝔼𝑓𝑊𝔼𝑓𝐻 , and  

𝕍𝑎𝑟(𝑓𝑡) = (𝕍𝑎𝑟(𝑓𝑀)  + (𝔼𝑓𝑀)² )(𝕍𝑎𝑟(𝑓𝑊)  + (𝔼𝑓𝑊)²)(𝕍𝑎𝑟(𝑓𝐻)  +  (𝔼𝑓𝐻)²)  −  (𝔼𝑓𝑀𝔼𝑓𝑊𝔼𝑓𝐻)².  

Hence, for each country, sector, and emitted component, at every time step 𝑡, we have an 
estimate for the variance of the associated time factor. Note that while the formula we derive 
is exact based on the independence assumption of the time factors, the data we use are 
variance estimates, and so the resulting variance is itself an estimate. 

We then use this variance and the mean estimate to derive a relative standard deviation for 
each country, sector, and emitted component. By multiplying this with the LF output, we have 
an estimate of the standard deviation which arises from the temporal profile. The LF 
methodology does not have native way to introduce this source of temporal uncertainty, so 
rather we consider it an additional source of uncertainty which is uncorrelated from emissions 
uncertainty, and simply add it on to our uncertainty estimate. However, we can not assume 
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that the temporal uncertainty at time 𝑡 manifest instantaneously into the concentration 
uncertainty at time 𝑡. Rather, some form of aggregation method is needed, the various 
methods of which are explored in subsequent sections. 

We summarize the inclusion of the temporal uncertainty with the following procedure: 

1. Use the country, sector, emitted component temporal uncertainties from Guevara et 
al. [2024]. 

2. For every time step, compute the time fraction (mean) and its standard deviation 
assuming independence. 

3. Compute a relative standard deviation, and then multiply this relative standard 
deviation by the associated Local Fractions output for that country, sector, emitted 
component.  

a. We can think of this as the instantaneous uncertainty in units of the data arising 
from the temporal profile. 

4. Aggregate all of these uncertainties, assuming that the temporal profiles are 100% 
correlated across sectors 

a. This correlation structure need not be the same as the emissions 
5. Consider an aggregated uncertainty for that day (e.g., the max of the previous 24 hour 

period, or a 24 hour rolling window). 
6. Add on this temporal variance to the emission variance. 

 

5.8 Analysis of air pollution episodes 

It is desirable to assess the effectiveness of the method for propagating uncertainties in 
emission amount and temporal profiles under a selection of pollution episodes caused by 
different emission sources. To do so, we choose the following air pollution episodes during 
2019 in European cities to gauge the method’s performance. For example, when an episode 
is primarily driven by emissions in a country or sector which is fairly uncertain, we anticipate 
that the resulting uncertainty will be larger and perhaps capture the spread of most of the 
observations (and conversely if the episode is primarily driven by emissions in a fairly certain 
country or sector). The chosen episodes may also be analyzed using the currently available 
tools on the CAMS policy service website: https://policy.atmosphere.copernicus.eu/yearly/ 

Table 5.3: Air pollution episodes used to investigate the propagation of emissions uncertainty 
method. 

City Time Type of episode 

Bratislava 2019.02.12 - 2019.02.18 PM2.5 arising from emissions in residential 
heating and industry 

Frankfurt 

 

2019.02.12 - 2019.02.19 PM2.5 arising from emissions in residential 
heating and industry 

Amsterdam 2019.03.16 - 2019.03.25 PM2.5 arising from emissions in the 
transportation and agricultural sectors. 

Warsaw 2019.10.19 - 2019.10.24 PM2.5 arising from industry, traffic and 
agriculture 

 

For each of the following episodes, we provide figures of the concentrations broken down by 
the Local Fractions output into the sector, country, and emitted component. Doing so allows 

https://policy.atmosphere.copernicus.eu/yearly/
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analysis of how each of the various sources contributes while integrating out the other 
dimensions (e.g., analyzing how the sectors contribute to the PM2.5 concentrations, while 
aggregating over the emitted components in all of the contributing countries).  

We additionally provide a prediction interval data product derived using our method compared 
with observations. In these figures, we show the pollutant concentrations with the prediction 
intervals derived from our method to propagate the emissions and temporal uncertainties and 
an assumed Gaussian distribution of the errors9. The 95% prediction intervals are also 
decomposed into the portion arising from local emissions, all emissions, and the temporal 
uncertainty. In all of the following figures, a rolling 24 mean of the temporal uncertainty is used, 
however this is subject to further exploration in Section 5.8.5. Observations are also 
incorporated into the analysis, categorized by station type (i.e., suburban or urban) to enable 
the calculation of empirical coverage. While data from both urban and suburban stations are 
included, it is important to note that the regional model is not expected to resolve the sub-grid 
variability required to accurately capture urban station measurements (see Section 3). These 
urban observations are included primarily to support the analysis, with the understanding that 
perfect agreement with the model is not expected. The empirical coverage is simply the 
percentage of observations which falls within the prediction interval. We are interested in this 
as a measure to ascertain, insofar as possible, the effectiveness of the method. In theory, if 
the model is unbiased and all sources of uncertainty have been properly accounted for, the 
empirical coverage should converge to the nominal (theoretical) coverage at the specified 
confidence level as the number of observations increases. However, in this method we only 
account for two sources of uncertainty: uncertainty in the amount of emissions and the 
temporal profile. So we should not expect that these quantities agree. However, a comparison 
with observations can still provide insight to the spread of the observations in relation to the 
prediction intervals, as well as inform us if the constructed prediction intervals are too large.  

5.8.1 Bratislava 2019.02.12 - 2019.02.18  

The build-up of the PM2.5 episode in Bratislava is generally captured well by the model, which 
makes it a good candidate episode to analyze as a reference. This air pollution episode is 
primarily driven by primary particulate matter arising from combustion in the residential heating 
sector, with Slovakia contributing the most starting from the afternoon of 16th February. This 
is well reflected by the increased contribution from local emissions to the prediction interval. 
In this case, the prediction interval often spans many of the observations when the model bias 
is low. The empirical coverage is 80.56%, which is relatively high because of the generally low 
bias of the model and relatively high uncertainty in the residential heating sector which 
dominates the contributions to the episode. The spread of the prediction interval generally 
corresponds well with the spread in observations, even when the model exhibits some bias. 

 
9 A Gaussian error distribution is a common and often reasonable assumption, particularly in models 
where the total error arises from the aggregation of numerous independent random sources, consistent 
with the Central Limit Theorem. This assumption provides analytical convenience and aligns with many 
real-world modeling contexts. However, if the model inputs exhibit significant correlations or if the error 
sources are not independent or identically distributed, the Gaussian assumption may no longer hold, 
potentially leading to biased or mischaracterized prediction interval estimates. This can manifest, for 
example, in prediction intervals which contain negative values. In principle, this should not occur if the 
variance is correct, so we maintain this assumed prediction distribution for now, with the caveat that 
once all sources of uncertainty are accounted for, further investigations should prioritize rectifying this 
matter.  
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Figure 5.4: Bratislava air pollution episode partitioned into contributions by sector, country, 
and emitted component alongside the empirical coverage induced by the estimated prediction 
intervals.  
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5.8.2 Frankfurt 2019.02.12 - 2019.02.19 

The next air pollution episode, in Frankfurt, is also primarily driven by primary particulate 
matter from residential heating combustion. However, significant contributions also come from 
aerosol precursor emissions related to agriculture, traffic, and industry. This provides valuable 
insight into how uncertainties across multiple sectors combine to influence the final data 
product. Initially, the pollution is dominated by emissions from Germany, but as the episode 
progresses, contributions from France and Switzerland become more prominent. The 
relatively even distribution of emissions across sectors suggests that national origin, rather 
than sector, plays a more defining role. While local emissions generally remain relatively stable 
throughout the event, showing typical diurnal variability, they are slightly smaller on the 
afternoon of the 16th when the pollution from Switzerland and Austria arrives. The empirical 
coverage is 79.48%, which is relatively high, but suffers because of the high bias of the model 
early in the episode, despite this time the spread of the observations matches the prediction 
interval.  

 

Figure 5.5: Frankfurt air pollution episode broken down by sector, country, and emitted 
components alongside the empirical coverage induced by the estimated prediction intervals.  
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5.8.3 Amsterdam 2019.03.16 - 2019.03.25 

This episode in Amsterdam is primarily driven by gaseous aerosol precursors (NOx, NH3 and 
NMVOC), offering a valuable perspective on the method’s performance in cases where the 
dominant influences are not from primary emissions. It is marked by a transition from natural 
to anthropogenic emissions and then back again (based CAMS Policy Service data). The time 
series begins with clean marine air carrying sea salt into the city. During the periods when 
natural sources are dominating, the prediction interval shrinks, as we do not account for 
uncertainties from natural emissions. Emissions arriving from the United Kingdom begin to 
dominate on the 19th, resulting in a wider prediction interval. As wind directions shift to the 
South and Southeast, air masses laden with high levels of anthropogenic pollutants, mainly 
ammonium nitrate and sulfate from Germany and Belgium, sweep into Amsterdam, triggering 
a significant pollution episode. Eventually, the winds shift once more, dispersing the pollution 
and restoring cleaner, more natural air conditions.  

Contrasted with the previous two episodes, residential heating plays relatively little role in this 
episode. The peak PM2.5 concentrations are mostly due to industrial emissions, followed by 
traffic, agriculture and solvents. While industry in general has a relatively high relative 
uncertainty, traffic and the agricultural sectors are relatively more certain. The consistent 
inclusion of natural sources in this episode results in prediction intervals which are small, 
achieving only a 43.06% empirical coverage. Some of this is due to model bias, for example 
on the 19th and 20th, when emission from the United Kingdom dominates. Although the bias 
is low during the beginning and end of the episodes, as we do not include uncertainty in the 
natural sources which dominate during these times, the prediction intervals are small and do 
not capture the spread of the observations at these times. 
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Figure 5.6: Amsterdam air pollution episode partitioned into contributions by sector, country, 
and emitted component alongside the empirical coverage induced by the estimated prediction 
intervals.   

 

5.8.4 Warsaw 2019.10.19 - 2019.10.24 

This episode in Warsaw is primarily driven by gaseous aerosol precursors (NOx, NH3 and 
NMVOC), offering another valuable perspective on the method’s performance in cases where 
the dominant influences are not from primary emissions. There are some systemic biases in 
the model during the episode, which the method generally is not able to capture. Initially the 
episode is dominated by Polish residential heating. However, on the evening of October 22nd, 
contributions from the public power, industry, and traffic sectors increased. At the same time, 
local contributions decrease as emissions from Germany and Czechia become more 
significant. This shift also leads to a reduced local contribution to the prediction interval, even 
though the interval itself remains relatively wide due to the rather large uncertainties 
associated with these German and Czech emissions. Later in the episode, local residential 
heating emissions once again dominate, resulting in a prediction interval largely shaped by 
uncertainty in local emissions, despite the model tending to overestimate actual pollution 
levels during this time.  

The empirical coverage is 75.97%. This coverage is somewhat lower in part due to the bias 
below, then bias above that the model has during the two main peaks of the episode. Despite 
this, the width of the prediction interval generally shows good alignment with the spread of 
observations in most cases. There are outlier observations on the 19th and the 24th from 
urban stations, which the model is not intended to replicate, that also contribute to lower 
coverage and are outside the spread of observations from suburban stations. 
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Figure 5.7: Warsaw air pollution episode partitioned into contributions by sector, country, and 
emitted component alongside the empirical coverage induced by the estimated prediction 
intervals.  

5.9 Exploring Temporal Profile Aggregation Methods  

In Section 5.8, each of the figures showing the empirical coverage used the same method to 
aggregate the temporal uncertainty: a rolling twenty-four hour window. There are other 
simplifications which one can consider, which can notably affect the results. Here we explore 
some various aggregation methods for temporal uncertainty to see the extent to which these 
choices matter, and what yields realistic prediction uncertainty quantification. In addition to a 
rolling 24 hour window, we consider the maximum, mean, and median temporal uncertainty 
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from the previous day as a method to aggregate these temporal uncertainties. The reason we 
use the day before is that it allows some time for air pollution to travel to each target city, 
whereas using the instantaneous temporal uncertainties from all contributing emission 
sources would not be realistic. In order to reliably compare the empirical coverages, each 
episode is run over the same period, cropping out the first day across temporal aggregation 
methods so that the prior day’s temporal uncertainties can be leveraged. 

Generally we find that the 24 hour rolling window, mean, and median yield relatively similar 
results, with a rather small contribution to the uncertainty derived purely from accounting for 
emissions uncertainty. On the other hand, aggregating the maximum uncertainty results in the 
most noticeable change in the total prediction interval. Without accounting for all sources of 
uncertainty, it remains difficult to numerically compare against observations to achieve a 
desired coverage. 

5.9.1 Warsaw 

 

Figure 5.8: Warsaw episode: Prediction interval and associated empirical coverage achieved 
by aggregating the temporal profile variances using the maximum value of the previous day. 

 

 

Figure 5.9: Warsaw episode: Prediction interval and associated empirical coverage achieved 
by aggregating the temporal profile variances using the mean value of the previous day. 
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Figure 5.10: Warsaw episode: Prediction interval and associated empirical coverage achieved 
by aggregating the temporal profile variances using the median value of the previous day. 

 

 

Figure 5.11: Warsaw episode: Prediction interval and associated empirical coverage achieved 
by aggregating the temporal profile variances using a 24 hour rolling window. 

 

 

5.9.2 Bratislava  

 

Figure 5.12: Bratislava episode: Prediction interval and associated empirical coverage 
achieved by aggregating the temporal profile variances using the maximum value of the 
previous day. 
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Figure 5.13: Bratislava episode: Prediction interval and associated empirical coverage 
achieved by aggregating the temporal profile variances using the mean value of the previous 
day. 

   

Figure 5.14: Bratislava episode: Prediction interval and associated empirical coverage 
achieved by aggregating the temporal profile variances using the median value of the previous 
day. 

 

 

Figure 5.15: Bratislava episode: Prediction interval and associated empirical coverage 
achieved by aggregating the temporal profile variances using a rolling 24 hour window. 

 

5.10 Exploring Prediction Interval Confidence Levels 

 

It is valuable to assess empirical coverage across multiple confidence levels in order to 
understand how closely the observed coverage aligns with the theoretical (nominal) coverage. 
This helps evaluate the robustness of the predictive uncertainty estimates, beyond any single 
confidence threshold. Rather than relying solely on one level, typically 95%, examining 
alternative levels can reveal whether the method consistently captures the underlying 
predictive distribution. In this brief analysis, we consider 80% as an alternative level that might 
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be of practical relevance to users of CAMS. While 80% represents a lower confidence 
threshold, it is often favored in scenarios where greater tolerance for uncertainty is acceptable 
or where less conservative estimates are needed. 

 

For Bratislava, the empirical coverage of the 95% prediction interval is 95.04%, matching the 
nominal level. This might actually indicate overestimation of the prediction variance, as several 
sources of uncertainty (such as those arising from natural emissions, meteorological 
variability, model resolution and non-linear chemical processes) are not fully accounted for in 
the modeling framework. The empirical coverage at the 80% prediction interval is 70.6%, 
reflecting a slight under-coverage. The model achieves near-nominal coverage at the 95% 
level (95.6%), but under-covers at the 80% level (70%). This indicates that while the extreme 
quantiles are well captured, the central part of the predictive distribution is too narrow, 
suggesting some underestimation of uncertainty for intermediate confidence levels. 

 

Figure 5.17: 80% Prediction interval assuming using a rolling 24 hour mean for the temporal 
uncertainty.  

5.11 Conclusions 

In this chapter, we reviewed contemporary methods for uncertainty propagation, introduced a 
novel analytical approach tailored for CAMS operational applications, and examined a range 
of correlation structures that modelers may consider. We also evaluated the method’s 
performance across selected air pollution episodes in Europe during 2019. Overall, the 
approach demonstrates good performance and produces plausible uncertainty estimates, 
offering potential value to users of CAMS data products by quantifying the uncertainty 
associated with air quality forecasts. 

The proposed method leverages readily available information from CAMS services, utilizes 
the most granular uncertainty data accessible, is grounded in mathematical rigor, and yields 
interpretable uncertainty estimates. Furthermore, the approach is computationally efficient, 
making it well-suited for rapid operational deployment. A key strength of the method is its 
flexibility, allowing modelers to incorporate domain-specific knowledge of realistic correlation 
structures. It is also extendable in that additional sources of uncertainty can be added on, 
allowing for refinement of the prediction variance estimates.  

Despite these methodological choices, there are important limitations to keep in mind. Most 
critically, the underlying emissions uncertainties themselves are highly uncertain, often due to 
limited data, expert judgment, or assumptions in the original inventories. This adds a layer of 
ambiguity to any propagated uncertainty estimates. Second, the degree of correlation between 
emissions could significantly influence the results, but in practice, the true correlation structure 
is poorly understood and rarely quantified. While the correlation structure is not known, the 
predictive distribution can also be challenging to specify. Throughout we have used an 
assumed Gaussian distribution with the caveat that this can occasionally yield non-physical 
prediction intervals containing negative values. Future work could strive to correct this once 
additional sources of uncertainty have been identified and accounted for, by, for example 
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imposing a positive support distribution, using truncated or censored models, and considering 
nonparametrics and quantile methods. Lastly, our approach assumes that the relationship 
between emissions and modeled outputs is approximately linear. While this simplification 
makes the analysis more feasible, it may not fully capture complex, nonlinear interactions 
present in some atmospheric processes. 
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6 Propagation of emission uncertainties into the ACT service and 
potential for operational implementation   

6.1 Introduction 

In this chapter, we present the results related to the calculation of error propagation from 
emissions to pollutant concentrations using the Air Control Toolbox (ACT) metamodel (Colette 
et al., 2022), which is widely used in the CAMS policy support framework 
(https://policy.atmosphere.copernicus.eu/) alongside the EMEP (Simpson et al., 2012) and 
LOTOS-EUROS (Manders et al., 2016) models. 

The ultimate goal is to provide a methodology that can be easily translated into an operational 
service to be integrated into the CAMS suite for estimating uncertainties in modeled pollutant 
concentrations stemming from uncertainties in emissions. 

The study focuses on the pollutant PM2.5, but the methodology could be easily extended to 
other pollutants such as PM10, NO2 and O3. 

As already explained in the previous chapter, the standard approach for calculating error 
propagation in a deterministic model involves performing Monte Carlo experiments by 
perturbing the input variables or parameters with known uncertainties, in order to analyze how 
these uncertainties propagate to the output variables. However, this method is extremely 
computationally expensive and may be less suitable for operational systems that are required 
to run continuously and provide outputs every day. 

Therefore, we adopted a similar approach to the one described in the previous chapter, 
favoring an analytical calculation of error propagation and the use of the ACT metamodel, 
which acts as an emulator of the CTM CHIMERE model (Couvidat et al., 2025) with respect 
to emission variations. One advantage of the analytical approach is the improved ability to 
identify the variables or sources that contribute most to uncertainty, as well as better control 
over the calculations being performed. 

This section presents the results of the propagation of emission uncertainties to pollutant 
concentrations using the Air Control Toolbox (ACT) metamodel. 

6.2 Total Emission and Temporal Uncertainty propagation using ACT 

This section describes the methodology used to assess pollutant concentration variations, per 
country and sector, arising from uncertainties in temporal emission factors and annual 
emissions. The method is structured in the following phases:  

1. Calculation of daily emission uncertainties at an hourly resolution, by pollutant and 
sector. 

2. Mapping of these uncertainties onto the ACT model sectors. 
3. Application of ACT to estimate the resulting range of variation in PM2.5 concentrations 

associated with sectoral emission uncertainties. 

The first step is detailed in Section 6.2.1, while the second and third steps are covered in 
Section 6.2.2. 
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6.2.1 Error propagation on hourly emissions at daily base 

Two types of uncertainties associated with anthropogenic emissions were considered: those 
related to the total annual emissions themselves, and those related to the temporality of these 
total emissions. 

We first calculated the uncertainty in hourly emissions based on the uncertainty in the temporal 
profiles provided by BSC, which were introduced in Section 5.7 of this report and are described 
in greater detail in Deliverable 5.1 (Guevara et al., 2024). 

Starting from the annual emissions per country, pollutant, and sector, 𝐸_𝑎𝑛𝑛𝑝𝑜𝑙,𝑠𝑒𝑐 , the hourly 

emission for a given hour and day of the year can be calculated as: 

         (Eq. 6.1) 

Where 𝐹_ℎ𝑝𝑜𝑙,𝑠𝑒𝑐, 𝐹_𝑤𝑝𝑜𝑙,𝑠𝑒𝑐, and 𝐹_𝑚𝑝𝑜𝑙,𝑠𝑒𝑐 are the unnormalized hourly, weekly, and monthly 

temporal profiles corresponding to that specific hour and date. The division by 24, 7, and 12 
ensures normalization, such that the sum of all hourly emissions 𝐸_ℎ𝑝𝑜𝑙,𝑠𝑒𝑐 over the entire year 

equals the annual emission 𝐸_𝑎𝑛𝑛𝑝𝑜𝑙,𝑠𝑒𝑐. 

To compute the uncertainty of  𝐸_ℎ𝑝𝑜𝑙,𝑠𝑒𝑐 based on the uncertainties of the temporal 

factors𝐹_ℎ𝑝𝑜𝑙,𝑠𝑒𝑐, 𝐹_𝑤𝑝𝑜𝑙,𝑠𝑒𝑐, and 𝐹_𝑚𝑝𝑜𝑙,𝑠𝑒𝑐 we apply the standard rules for error propagation 

in a multiplicative function of the form: 

 

where a, A, B and C are 𝐸_𝑎𝑛𝑛𝑝𝑜𝑙,𝑠𝑒𝑐, 𝐹_ℎ𝑝𝑜𝑙,𝑠𝑒𝑐, 𝐹_𝑤𝑝𝑜𝑙,𝑠𝑒𝑐, and 𝐹_𝑚𝑝𝑜𝑙,𝑠𝑒𝑐, respectively. Since 

in this step the annual emission 𝐸_𝑎𝑛𝑛𝑝𝑜𝑙,𝑠𝑒𝑐 is not treated as uncertain, it is considered a 

constant multiplicative parameter. Assuming that the uncertainties of the three variables are 
uncorrelated, it can be shown through standard mathematical derivation (Taylor, 1997) that 
the relative uncertainty associated with f is approximated by: 

       Eq. 6.2 

WIth 𝜎𝐴 ,𝜎𝐵, 𝜎𝐶  the uncertainties associated with variables A, B and C respectively. 

Returning to Eq. 6.1, and based on Eq. 6.2, the relative uncertainty of hourly emissions due 
to the uncertainties in the temporal profiles can be expressed, for each country, pollutant, and 
emission sector, as follows: 

      Eq. 6.3 

where 𝜎𝑝𝑜𝑙,𝑠𝑒𝑐 is the uncertainty in the hourly emissions, and 𝜎_ℎ𝑝𝑜𝑙,𝑠𝑒𝑐, 𝜎_𝑤𝑝𝑜𝑙,𝑠𝑒𝑐 and 

𝜎_𝑚𝑝𝑜𝑙,𝑠𝑒𝑐  are the uncertainties associated with the hourly, weekly, and monthly temporal 

profiles 𝐹_ℎ𝑝𝑜𝑙,𝑠𝑒𝑐, 𝐹_𝑤𝑝𝑜𝑙,𝑠𝑒𝑐, 𝐹_𝑚𝑝𝑜𝑙,𝑠𝑒𝑐respectively. 

Varying emission uncertainties on an hourly basis is not well suited for the ACT model, which 
is primarily designed to handle emission scenarios that are applied and maintained 
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consistently over longer periods. In addition, depending on the emission sectors, the hourly 
variability of uncertainties can be quite large and we observed that in some cases a maximum 
uncertainty is associated with the hours when emissions are lowest. It was then decided, for 
a given pollutant and sector, to apply the same relative uncertainty over all hours of a day. 
The relative uncertainty associated with the hour (hmax) with the highest hourly temporal 

factor (𝐹_ℎ𝑝𝑜𝑙,𝑠𝑒𝑐
ℎ𝑚𝑎𝑥 ) was chosen and named 𝑟𝜎_ℎ𝑝𝑜𝑙,𝑠𝑒𝑐

ℎ𝑚𝑎𝑥  in the rest of the document  

𝑟𝜎_ℎ𝑝𝑜𝑙,𝑠𝑒𝑐
ℎ𝑚𝑎𝑥 = 

𝜎_ℎ𝑝𝑜𝑙,𝑠𝑒𝑐
ℎ𝑚𝑎𝑥

𝐹_ℎ𝑝𝑜𝑙,𝑠𝑒𝑐
ℎ𝑚𝑎𝑥  

Therefore, defining the overall relative hourly uncertainty in emissions as 𝜀_ℎ𝑝𝑜𝑙,𝑠𝑒𝑐 , Eq. 6.3 

becomes: 

  

    Eq. 6.4 

 

It is important to emphasize that this approach is both relevant and applicable because the 
simulation system used by INERIS — also employed to train the ACT model — now relies on 
CAMS-TEMPO. As a result, total annual emissions are effectively converted into hourly 
emissions using the same temporal profiles presented in Guevara et al. (2024). 

It should be noted that this is one possible approach, but not the only one, for deriving a 
representative value of hourly relative uncertainty that reflects the variability over an entire 
day. Alternative methods could use: 

1. the relative uncertainty calculated from the daily maximum absolute uncertainty 
2. the maximum relative uncertainty over the day 
3. the average relative uncertainty over the day 

Method 1 (maximum absolute uncertainty) would give results very close to the implemented 
method because it is very often the same hours that show the highest hourly temporal factor 
and absolute uncertainty. Method 2 (maximum relative uncertainty) would overestimate 
uncertainties by occasionally selecting very high values that, in reality, apply only to low 
emissions (i.e. low hourly temporal factor). In method 3, the results do not differ significantly 
from those of the chosen method. The key distinction is that the chosen method is better suited 
to prioritizing the values associated with the strongest temporal factors, rather than assigning 
equal weight to all factors as in method 3. 

In a second step,  the uncertainty associated with annual emissions was added to the 
uncertainties calculation with the assumption that these uncertainties are not correlated with 
those associated with the time profiles. 

For the ACT model, the most appropriate uncertainties are those provided—within the scope 
of this project—by TNO for each country, sector, and pollutant (Super et al., 2023; 2024). 
These country-level uncertainties offer a sufficiently smooth spatial representation (at least as 
a first-order approximation) to remain consistent with the fundamental assumptions 
underpinning the ACT meta-model. 
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The starting point remains Eq. 6.1, except that now the variable 𝐸_𝑎𝑛𝑛𝑝𝑜𝑙,𝑠𝑒𝑐 is also treated as 

uncertain. 
 By repeating the same steps as before, the resulting relative uncertainty—by country, 
pollutant, and emission sector—that accounts for both the temporal emission profiles and the 
annual total emissions is given by the following formula: 

  

    

 

TNO uncertainties are provided as annual estimates in both absolute and relative standard 
deviations. However, following the recommendations of the data providers, we exclusively use 
the relative standard deviations, denoted as 𝜀_𝐸_𝑎𝑛𝑛𝑝𝑜𝑙,𝑠𝑒𝑐. The equation used to compute the 

total relative uncertainty 𝜀_ℎ_𝑡𝑜𝑡𝑝𝑜𝑙,𝑠𝑒𝑐 is therefore as follows: 

   

    

  Eq. 6.5 

 

 

6.2.2 Error propagation in ACT 

Before describing how sectoral emission uncertainties were computed and incorporated into 
ACT, we recall the formulation of the ACT model. 

The Air Control Toolbox (ACT) meta-model (Colette et al., 2022) is the first air quality meta-
model developed from the CHIMERE model to explore scenarios of anthropogenic emission 
reductions and their impacts on air quality. 
 ACT focuses on emissions from six main sectors: agriculture (AGR), industry (IND), 
residential heating (RH), road transport (TRA), shipping (SHP) and others (OTH) – including 
solvents, aviation, offroad, waste. It is calibrated every day using 16 perturbed CHIMERE 
simulations (Couvidat et al., 2025), in which emissions from the six sectors are reduced by 
different percentages across the entire domain to capture system variability, along with one 
unperturbed reference simulation. 

From a mathematical perspective, ACT is a second-order polynomial that estimates the 
variation in pollutant concentrations based on the relative changes in emissions with respect 
to a reference scenario, for each emission sector. 
 Originally developed to estimate concentration changes for PM10, PM2.5, O3, and NO₂, ACT 
has been extended within the scope of this project to also handle major PM10 subspecies, as 
detailed in Deliverable 6.3 (Zhang et al., 2025). 

The complete formulation is given by: 
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           Eq. 6.6 

Where: 

𝛥C represents the resulting change in pollutant concentration due to emission reductions. 
 Knowing the reference concentration 𝐶𝑟𝑒𝑓, it is possible to compute the concentration under 

the emission reduction scenario as 𝐶𝑎𝑔𝑟,𝑖𝑛𝑑,𝑟𝑒𝑠,𝑡𝑟𝑎,𝑠ℎ𝑝,𝑜𝑡ℎ . 

𝜀𝑎𝑔𝑟, 𝜀𝑖𝑛𝑑, 𝜀𝑟𝑒𝑠, 𝜀𝑡𝑟𝑎, 𝜀𝑠ℎ𝑝, 𝜀𝑜𝑡ℎ are the percentage reductions in emissions by sector, expressed 

as values in the range [0,1]. A value of 0 means no reduction, while a value of 1 indicates a 
complete reduction. 

The coefficients:  

    

are parameters obtained by fitting Eq. 6.6 to the perturbed CHIMERE simulations. 

These parameters vary by grid cell, time step, and pollutant, and are constrained such that 
the ACT function passes through the origin. In other words, if there are no emission changes 
(𝜀𝑎𝑔𝑟, 𝜀𝑖𝑛𝑑, 𝜀𝑟𝑒𝑠, 𝜀𝑡𝑟𝑎, 𝜀𝑠ℎ𝑝, 𝜀𝑜𝑡ℎ= 0.), the resulting concentration change must be zero  (𝛥𝐶 =

0). 

As we can see, the ACT model does not explicitly handle information related to specific 
chemical species. Instead, it only accounts for the percentage variation in emissions per 
sector. 

Moreover, the emission sectors used in ACT do not follow the GNFR classification, as 
previously discussed, but rather an aggregated sectoral structure specific to ACT: 

● AGR: Agriculture (NFR_K AgriOther + NRF_L Livestock) 
● IND: Industry (NFR_A Public Power + NFR_B Industry + NFR_D Fugitive) 
● RH: Residential (NFR_C OtherStationary Combustion) 
● TRA: Traffic (NFR_F1 Road Transport Exhaust gasoline + NFR_F2 Road Transport 

Exhaust diesel + NFR_F3 Road Transport Exhaust LPG + NFR_F4 Road Transport 
Non exhaust) 

● SHP: Shipping (NFR_G Shipping) 
● OTH: Others (NFR_E Solvents + NFR_H Aviation + NFR_I Offroad + NFR_J Waste + 

NFR_M Other) 

Therefore, the sector- and pollutant-specific relative uncertainties calculated in the previous 
section must be adapted before being input into ACT. 

To convert emission uncertainties that depend on both pollutant and sector into uncertainties 
that depend only on the sector, we associate each sectoral uncertainty with the dominant 
emitted species for that sector. 

More specifically, for GNFR sectors: 

● A, F1, F2, F3, G, H, I → associated with NOx emission uncertainties 
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● B → associated with SOx emission uncertainties 
● C → associated with PM2.5 emission uncertainties 
● D, E, J, F4 → associated with NMVOC emission uncertainties 
● L, K → associated with NH₃ emission uncertainties 

ACT sectors are, in most cases (except for Shipping and Residential), aggregations of two or 
more GNFR sectors. So, to each ACT sector, we assigned an uncertainty equal to the 
maximum of the uncertainties associated with the contributing GNFR sectors. 

For example, for the agricultural sector: 

 

To calculate the perturbation in pollutant concentrations due to emission uncertainties, the 
relative errors—calculated as described above—are injected into the ACT model trained for 
that specific pollutant. 

The hourly concentration variation per pollutant is therefore expressed as: 

    Eq. 6.7 

In this case, ACT trained for PM2.5 is used to propagate the uncertainties and estimate their 
impact on this specific pollutant. 

 

 

6.3 General analysis of the results: from uncertainty on emissions to 
uncertainty on concentrations 

The method described in 6.2 is applied to assess the impact of emission uncertainties on 
modeled hourly concentrations of air pollutants across various European cities. 

Specifically, the reference PM2.5 concentration over each city is calculated. Then, using 
Equation 6.7, we estimate the resulting concentration ranges by considering either: 

● the uncertainty associated solely with annual emissions, or 
● the full uncertainty, including uncertainties on both annual emissions and temporal 

emission factors 

 

6.3.1 Emissions uncertainties as used by ACT  

We first present the emission uncertainties as they are incorporated into the ACT model, 
already aggregated by ACT sectors. As explained in  section 6.2.2, for each sector, the 
uncertainty associated with the most representative pollutant of the sector is selected, and if 
the ACT sector is made up of several GNFR sectors, the maximum uncertainty between these 
sectors is retained. For example, for sector RH, i.e. residential heating (also called residential 
sector), PM2.5 emission uncertainties from the GNFR sector C is retained. 
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Milan (Italy) Brussels (Belgium) 

  

Figure 6.1 : Hourly relative uncertainties by ACT sectors (AGR, IND, RH, TRA, SHP, OTH) 
calculated for some selected cities over the entire year 2019. The triangles show uncertainties 
derived from total annual emissions uncertainties only (Super et al., 2023; 2024), while the 
boxplots represent the full uncertainties i.e. including both uncertainties from annual emissions 
and the ones associated to the temporal factors (Guevara et al., 2024). 

  

What is striking in these figures is that the sectors with the greatest uncertainty are the RH 
and OTH sectors. For the latter, it is the uncertainty on the total annual emissions that induces 
these high values. More precisely, a detailed examination of the GNFR sectors contributing to 
the ACT sector (Appendix C, Figure C1), shows that it is almost always sector E (Solvents 
sector) which has the maximum uncertainty due to uncertainties on total NMVOC emissions. 
For the RH sector, the responsibility for uncertainty is shared approximately equally between 
that linked to total annual emissions and that linked to temporality. This sector is also the one 
that shows the greatest variability in emissions uncertainty over time. If we break down the 
temporal uncertainty (Appendix C, Figure C2), we can see that this is mainly due to the 
uncertainty associated with the monthly profile, which varies greatly from one month to the 
next. Note that for some sectors and pollutants (GNFR D, E, G, I, J etc.) the relative 
uncertainties from Guevara et al., (2024) do not vary over time. It is also quite notable that the 
uncertainty values are quite similar from one country to another, whether in terms of total or 
temporal uncertainty.  

 

 

6.3.2 Uncertainties in concentration for cities 

Figure 6.2 presents the hourly relative concentration uncertainties for each city, derived both 
from the total uncertainties (green box plots) and from those attributable exclusively to annual 
emissions (orange box plots). This is a summary figure as it represents all values for the year. 
However, it allows us to see if there are any significant differences between cities. The annual 
variability of the standard deviation of concentrations is roughly the same in these cities, with 
a median relative uncertainty (relative standard deviation) between 0.4 and 0.55. Some cities 
have less uncertainty in concentrations: Palermo (0.24), Marseille (0.27) and Athens (0.32). 
This is probably due to the fact that the sectors that contribute most to PM2.5 precursor 
emissions are different for these Mediterranean cities, with a smaller share from the residential 
sector (which has high levels of uncertainty). However, it is important to note that the 
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uncertainty we estimate in this study is only the uncertainty of anthropogenic emissions, 
whereas these cities are more affected than many others by natural emissions such as, for 
instance, desert dust. 

 

Figure 6.2 : Box plots of the relative uncertainties calculated for PM2.5 concentrations from 
sectoral uncertainties on emissions for selected cities. Orange box plots represent the relative 
uncertainties associated with the uncertainties on total annual emissions only and the green 
box plots the concentrations associated with the full uncertainties (total annual + temporal 
factors). All hourly concentrations of the year 2019 are represented in the box plots. 

 This figure also allows for a quick comparison between the concentrations obtained with the 
complete uncertainties and those with the only annual emission uncertainties. Taking into 
account temporal uncertainty in addition to that in the annual total leads to an increase in 
uncertainties, with medians increasing by 25 to 85% depending on the city. Once again, the 
cities least affected by the inclusion of temporal uncertainty are the Mediterranean ones, for 
the same reasons mentioned earlier. 

6.4  Case studies 

We selected the same cities and air pollution episodes presented in Table 5.3. The aim is not 
only to present the results obtained with ACT, but also, through comparison with the outcomes 
in section 5, to evaluate how different modeling approaches and methodologies can lead to 
varying results. 

We present the findings for the cities of Bratislava, Frankfurt, Amsterdam, and Warsaw 
focusing on PM2.5 concentrations. 

A comparison with observed data is included to evaluate where the actual measurements fall 
within the modeled concentration ranges. The observational data come from EEA (European 
Environment Agency) Air Quality monitoring stations and are the same as those used for 
model validation (https://policy.atmosphere.copernicus.eu/daily/model-evaluation). Only 
background monitoring stations were considered for this analysis. 

https://policy.atmosphere.copernicus.eu/daily/model-evaluation/
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In addition to quantifying the total uncertainty and that associated with the annual emission 
uncertainties, the ACT model is also used to isolate the contribution of each of the six ACT 
sectors (AGR, IND, RH, TRA, SHP, AND OTH) to the overall concentration uncertainty. By 
applying Equation 6.7 individually to each εsec (defined as the relative uncertainty associated 
with the emissions of a given sector), the sector-specific impact on modeled PM2.5 
concentrations was computed. These individual contributions are then normalized to the total 
concentration uncertainty, thereby providing a sectoral breakdown of the propagated emission 
uncertainty. 

The following sections present the results for PM2.5 concentrations across the cities of 
Bratislava, Frankfurt, Amsterdam, and Warsaw over the different pollution episodes. 

 

6.3.3 Bratislava: 2019.02.12 - 2019.02.18 

The pollution episode that occurred in Bratislava is also well captured by the CHIMERE model, 
which accurately simulates the increase in PM2.5 concentrations between February 15 and 19 
(Figure 6.3). Although observed values are significantly higher than the modeled 
concentrations (dark green line), they remain quite within the variability range when emission 
uncertainties are taken into account, with an empirical coverage of 71% when total emission 
errors are taken into account. It is also evident that a big contribution is given by the uncertainty 
originating from the temporal disaggregation of emissions (Figure 6.3 and Table 6.1). 
Regarding the sectoral breakdown of uncertainty (Figure 6.4), the residential sector 
contributes the most, with an average share of 55–57% of the total variability (column 5, Table 
6.1). This is consistent with the nature of the episode, which is primarily driven by residential 
emissions, as also highlighted in Section 5.8.1 

 

 

Figure 6.3: Hourly PM2.5 concentrations during the pollution episode in Bratislava. The dark 
green line represents the concentrations modeled by CHIMERE. The green shaded area 
indicates the variability range due to uncertainties in national annual emission, while the light 
green shaded area represents the total uncertainty range (including both temporal factors and 
national total emission uncertainties). Grey dots correspond to observations from EEA 
background monitoring stations in Bratislava.  
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Figure 6.4 : Sectoral breakdown of the propagated emission uncertainty during the Bratislava 
episode. The dark green line represents the PM2.5 concentrations modeled by CHIMERE. The 
colored areas indicate the contribution of emission uncertainties from different ACT sectors to 
the variability in PM2.5 concentrations. Specifically, light violet represents traffic, pink 
represents industry, green represents agriculture, orange represents the residential sector, 
light blue represents shipping, and grey corresponds to other anthropogenic GNFR sectors 
not included in the previous categories (solvents, aviation, off-road, waste, others). 

 

Table 6.1 : Summary table of the Bratislava episode with values averaged over the entire 
period. The first row refers to the results when considering the total emission uncertainty, while 
the second row refers to the uncertainty due to national annual emission only. The averaged 
variables, from left to right, are: the PM2.5 concentration from the reference simulation, the 
concentration variability associated with emission uncertainty, and the percentage contribution 
to the uncertainty from the different ACT sectors (traffic, industry, agriculture, residential 
sector, shipping, and others)/ Last column refers to Empirical Coverage. 

Bratislava   

Err 

type 

CRef delta(C) TRA IND AGR RH SHP OTH Empirical 

Coverage 

 µg/m3 µg/m3 % % % % % % % 

Total 22.9 ±12.3 6 5 25 55 1 7 71 

Ann 22.9 ±7.0 3 5 22 57 2 11 55 
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6.3.4 Frankfurt 2019.02.12 - 2019.02.19  

In the case of Frankfurt, CHIMERE overestimates the increase in PM2.5 between February 14 
and 16, while it aligns more closely with observations on the other days (Figure 6.5). In this 
case as well, visualizing the concentration variations associated with emission uncertainties 
supports the interpretation of the model-to-observation comparison, with an empirical 
coverage reaching up to 46%. For Frankfurt, the sector contributing the most to the uncertainty 
remains the residential sector (Figure 6.6), accounting for 31–33% of the total error. However, 
other sectors also contribute significantly, in order of importance: Agriculture (24–30%), 
Others (including solvents, aviation, offroad, and waste) with a contribution of 20–30% and 
Traffic (3–10%) (Table 6.2). 

 

Figure 6.5 : Same as Figure 6.3, but for the pollution episode in Frankfurt. 

 

 

Figure 6.6 : Same as Figure 6.4, but for the pollution episode in Frankfurt. 
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Table 6.2 : Same as Table 6.1, but for the pollution episode in Frankfurt. 

Frankfurt   

Err 

type 

CRef delta(C) TRA IND AGR RH SHP OTH Empirical 

Coverage 

 µg/m3 µg/m3 % % % % % % % 

Total 22.9 ±11.7 10 7 30 33 0 20 46 

Ann 22.9 ±7.8 3 8 24 31 1 30 34 

 

 

6.3.5 Amsterdam 2019.03.16 - 2019.03.25 

The case of Amsterdam differs from the previous ones. As described in Section 5.8.3, this 
episode is not primarily driven by strong residential emissions but instead features an initial 
phase dominated by natural sources, followed by a second period influenced by air masses 
carrying anthropogenic pollutants (Figure 6.7). Since uncertainties related to natural emissions 
are not considered, the resulting propagated error remains low during the first days. In 
contrast, an increase in uncertainty is observed in the latter period. During this second phase, 
the main contributor to the total error is Others sector (28-39%), followed by Agriculture (23-
33%) (Figure 6.8 and Table 6.3).  

It is also observed that, the overall variability in PM2.5 concentrations remains below 50%, 
which is lower compared to the other case studies. As will be further discussed in the following 
section, this is primarily due to the fact that the residential sector—associated here with the 
highest uncertainty—plays a less dominant role in this episode. Consequently, when 
emissions from the residential sector are not the main driver of concentrations, the associated 
propagated uncertainty tends to be reduced. 

 

 

Figure 6.7 : Same as Figure 6.3, but for the pollution episode in Amsterdam. 
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Figure 6.8 : Same as Figure 6.4, but for the pollution episode in Amsterdam. 

 

Table 6.3 : Same as Table 6.1, but for the pollution episode in Amsterdam. 

Amsterdam   

Err 

type 

CRef delta(C) TRA IND AGR RH SHP OTH Empirical 

Coverage 

 µg/m3 µg/m3 % % % % % % % 

Total 22.9 ±9.8 7 11 33 10 11 28 49 

Ann 22.9 ±6.8 5 13 23 9 11 39 36 

 

 

 

6.3.6 Warsaw 2019.10.19 - 2019.10.24 

In the case of Warsaw, the model tends to overestimate the observations although it remains 
within the expected variability range (Figure 6.9) with an empirical coverage of 73% when total 
emission error is taken into account. The sector contributing the most to the propagated 
uncertainty is Residential, accounting for 37–38% of the total error, followed by the Agriculture, 
which contributes 28–32% (Figure 6.10 and Table 6.4). 
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Figure 6.9 : Same as Figure 6.3, but for the pollution episode in Warsaw. 

 

 

Figure 6.10: Same as Figure 6.4, but for the pollution episode in Warsaw. 

Table 6.4: Same as Table 6.1, but for the pollution episode in Warsaw. 

Warsaw   

Err 

type 

CRef delta(C) TRA IND AGR RH SHP OTH Empirical 

Coverage 

 µg/m3 µg/m3 % % % % % % % 

Total 22.9 ±24.1 8 13 32 38 0 8 73 

Ann 22.9 ±15.4 5 15 28 37 1 14 47 
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6.4 Sensibility to temporalization 

The issue of how to validly assign errors related to the temporal distribution of emissions does 
not have an obvious solution. For example, the concentrations at a specific spatial point within 
our domain—let’s denote it as point j—depend on a set of emissions originating from various 
locations across the domain, which are not necessarily in close proximity. Consequently, the 
error affecting the concentration at that point may be associated with different temporal 
uncertainties, since the contributing emissions may not have occurred at the same time. 

If local emissions are assumed to be predominant, the temporal error corresponding to the 
same day could be a reasonable approximation. On the other hand, if it is considered that the 
emissions influencing concentrations at the point are more distant, it may be more appropriate 
to account for the error from the previous day—or even earlier. 

Since we are not able to modulate the temporal error of emissions based on the time it takes 
for them to reach point j, and can only apply the same temporal offset to all emissions, we 
decided to conduct a sensitivity test. Two scenarios were considered: (1) the emission errors 
from day x were propagated to the concentrations on the same day: “Same day scenario” (x), 
and (2) the emission errors from day x–1 were propagated to the concentrations on day x: 
“Day before scenario”. The resulting PM2.5 concentration errors in the two cases were then 
compared over different cities: Paris, Lyon, Marseille, Milan, Palermo, Rome, Brussels, 
Barcelona, Berlin, Frankfurt, Athens, Rotterdam, Amsterdam, Utrecht, Oslo, Warsaw, 
Bratislava. 

The results show that the differences between the relative PM2.5 concentration errors in the 
two scenarios are very small. Considering the cities observed throughout the entire year 2019, 
75% of the hourly concentrations show a difference of only 0.04% with respect to the total 
PM2.5 concentration, with a maximum difference of 4.6% observed in Warsaw on 1 May. 

To better illustrate the differences between the two scenarios, Figure 6.11 presents the case 
of Warsaw. The top plot corresponds to the Same Day scenario, while the bottom plot 
corresponds to the Day Before scenario. As can be seen, the differences are barely 
noticeable, with a slight deviation around midnight on 1 May. 

The reason why the differences are not large at all lies in the fact that, although the errors on 
temporal factors can be quite significant (as we have already shown), their day-to-day 
variability is not especially high. 

 

Same Day scenario 
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Day Before scenario 

 

Figure 6.11 : Hourly PM2.5 concentrations in Warsaw from 30 April to 2 May 2019 under the 
Same Day scenario (top panel) and the Day Before scenario (bottom panel). The dark green 
line represents the concentrations modeled by CHIMERE. The green shaded area indicates 
the variability range due to uncertainties in annual emission, while the light green shaded area 
represents the total uncertainty range (including both temporal factors and national annual 
emission uncertainties). Grey dots correspond to observations from EEA background 
monitoring stations in Warsaw. 

 

6.5 Conclusion 

This section presented a methodology for propagating emission uncertainties to PM2.5 
concentrations, accounting for both uncertainties in temporal allocation factors and total 
annual emissions. The approach leverages the ACT metamodel, starting from an initial 
estimate of hourly emission errors derived through analytical error propagation from temporal 
factors (Guevara et al., 2024), as well as from country-, sector-, and pollutant-specific annual 
emission uncertainties (Super et al., 2023, 2024). The current implementation provides 
estimates of variability in PM2.5 concentrations over major European cities, but the 
methodology can be readily extended to all grid points within the modeling domain and to 
additional pollutants. 

The method is computationally efficient, requiring minimal processing time and resources, 
making it particularly well suited for potential operational deployment. 

Results indicate relatively large propagated errors, which are consistent with the substantial 
uncertainties associated with emissions—especially those related to temporal disaggregation 
factors. The residential sector is by far the most affected by temporal uncertainties, and 
consequently, the total propagated errors are highest in regions and periods where this sector 
dominates. 

Notable differences arise when comparing this method to that described in chapter 5. These 
discrepancies can be attributed to several factors. While both methods adopt an analytical 
approach to variance estimation, they rely on different formulations of uncertainty propagation. 
In the present method, uncertainties are treated as independent, while the results presented 
in chapter 5 assume some degree of correlation between emission sources. Furthermore, the 
two underlying models, ACT and the Local Fraction method, differ substantially. Notably, ACT 
does not distinguish between local and non-local emissions, meaning that the computed 
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hourly emission errors are applied uniformly across the domain. This may lead to an upper-
bound estimate of the concentration errors. 

Further investigation is needed to fully understand the drivers of divergence between the two 
approaches. Nevertheless, the results underscore the fact that different methodologies for 
uncertainty propagation can themselves lead to substantial variability—highlighting the 
importance of cross-validation in air quality uncertainty assessments. 
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10. APPENDIX A  
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Figure A1 Box quantile diagrams summarizing the local contribution to PM10,, primary PM10, 
SO4, NO3 and NH4. concentrations for the 79 European cities, For each of the 3 plots, the 
receptor is the same: from left: 1) area weighted receptor = source, 2) population weighted 
receptor = source and 3) centre grid cell. Within each plot, sources (and model resolution) 
vary: ‘3x3 14 km’ means that the city source area is defined by 3x3 grid cells in 0.25x0.125 
degree model resolution, ‘0.2x0.1 city’ means that core city area is the source and the model 
is run in 0.2x0.1 degree resolution,  ‘0.3x0.2 city’ means that core city area is the source and 
the model is run in 0.3x0.2 degree resolution and ‘0.2x0.1 FUA’ means that FUA is the source 
area and the model is run in 0.2x0.1 degree resolution. The box borders show the 10th and 
90th percentile and the two extremities are the max and min values. The horizontal line within 
the box represents the median. 

 



CAMEO  
 

D6.2   86 

 

Fig A2: Total contribution/concentration (ug/m3) to NO2 concentrations in European cities (x-
axis for 0.2x0.1 degree resolution, y-axis for 0.3x0.2 degree resolution). The city source 
areas are the core city area, but the receptor area is either the mid-grid cell, area weighted 
concentrations for the core city or population weighted concentrations for the core city. The 
size of the circles represent the total concentrations. 
 
 

 

Figure A3: Local contribution (ug/m3) to NO2 concentrations in European cities (x-axis for 
0.2x0.1 degree resolution, y-axis for 0.3x0.2 degree resolution). The city source areas are the 
core city area, but the receptor area is either the mid-grid cell, area weighted concentrations 
for the core city or population weighted concentrations for the core city. The size of the circles 
represent the local contribution (higher contribution means larger circles). 
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Figure A4: Total contribution/concentration (ug/m3) to O3 concentrations in European cities 
(x-axis for 0.2x0.1 degree resolution, y-axis for 0.3x0.2 degree resolution). The city source 
areas are the core city area, but the receptor area is either the mid-grid cell, area weighted 
concentrations for the core city or population weighted concentrations for the core city.  The 
size of the circles represent the size of the total concentration. 

 

 

Figure A5: Local contribution (ug/m3) to O3 concentrations in European cities (x-axis for 
0.2x0.1 degree resolution, y-axis for 0.3x0.2 degree resolution). The city source areas are the 
core city area, but the receptor area is either the mid-grid cell, area weighted concentrations 
for the core city or population weighted concentrations for the core city. The size of the circles 
represent the local contribution (larger circles means smaller negative contribution). 
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Figure A6: Effect of resolution on local NO2 contributions (ug/m3). The source area is 
always core city area, the receptor area is either mid-grid cell, area weighted 
concentrations in core city or population weighted areas in core city. Left column: 
Daily data for 2019, middle column: monthly data for 2019, Right column: Yearly 
average data. 
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Figure A7: Effect of resolution on local O3 contributions (ug/m3). The source area is 
always the core city area, the receptor area is either mid-grid cell, area weighted 
concentrations in core city or population weighted areas in core city. Left column: 
Daily data for 2019, middle column: monthly data for 2019, Right column: Yearly 
average data. 
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11. APPENDIX B 

 

Table B1: European countries sorted by highest to lowest relative standard deviation for PM2.5. 

Country Code Value 

MDA 0.58452 

TUR 0.524138 

MKD 0.505146 

UKR 0.469639 

MLT 0.454142 

ALB 0.452168 

SRB 0.447338 

KOS 0.44693 

RUS 0.410813 

MNE 0.409672 

EST 0.39876 

BIH 0.396314 

CYP 0.375146 

BGR 0.370363 

GRC 0.357632 

BLR 0.350079 

LVA 0.349286 

HRV 0.345444 

IRL 0.328036 

ROU 0.324135 

ISL 0.323057 

DNK 0.321274 

LUX 0.320765 

SVN 0.316865 

AUT 0.315645 

HUN 0.312726 

LTU 0.312338 

FIN 0.310828 

ITA 0.309557 

CZE 0.300207 
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SVK 0.297181 

NLD 0.296421 

NOR 0.295081 

POL 0.292615 

FRA 0.29153 

SWE 0.2904 

DEU 0.284933 

PRT 0.267561 

BEL 0.262321 

ESP 0.262187 

CHE 0.24606 

GBR 0.235246 
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Figure B1: The fractional contribution from each sector to PM2.5 in Summer 2019. 
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Figure B2: The fractional contribution from each sector to PM2.5 in Winter 2019.  
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12. APPENDIX C 

In sections 6.2 and 6.3, we showed that the variability in PM2.5 concentrations due to emission 
uncertainties is often quite significant, reaching up to nearly 70% of the reference 
concentration — see, for example, Table 6.1 for Bratislava. Furthermore, we observed that 
this variability tends to be higher when the contribution from the residential sector is 
predominant. In such cases, the variability is largely driven by uncertainties in the temporal 
factors rather than by uncertainties in total annual emissions (Figure 6.3). 

To explore this aspect further, we examined the uncertainties calculated for each GNFR sector 
prior to their aggregation into ACT sectors. The uncertainties displayed here refer to the 
pollutants used as proxies to characterize the uncertainty of each sector (see Section 6.2.2 
for more details). Figure C1 shows relative hourly uncertainties by GNFR sector for the entire 
year 2019, for the four countries corresponding to the cities used in the case studies of section 
6.3. The triangles show uncertainties derived from annual emissions uncertainties only (Super 
et al., 2023; 2024), while boxplots represent the full uncertainties i.e. including both 
uncertainties from annual emissions and the ones associated with the temporal factors 
(Guevara et al., 2024). 

What clearly emerges is that GNFR sector C (Other Stationary Combustion), which 
corresponds to the ACT residential sector (RH), is among the sectors with the highest 
uncertainty in all the countries considered. Most values range between 0.5 and 0.8, 
corresponding to very high relative uncertainties (50–80%). 

It can also be observed that, in general, accounting for uncertainties in temporal profiles (box 
plots in Figure C1) substantially increases the relative uncertainty compared to the case where 
only annual emissions uncertainties are considered (triangles in Figure C1). This suggests 
that the contribution to the total uncertainty is strongly due to temporal uncertainties. 
Furthermore, observing the high errors associated with the residential sector (box plots in 
Figure C1), it is evident why the concentration uncertainties are very high in cases where the 
residential sector is dominant (see the case of Bratislava, Frankfurt and Warsaw, in sections 
6.3.3, 6.3.4 and 6.3.6). 

For the case of Amsterdam (section 6.3.5), one of the most relevant sectors is Others (which 
includes GNFR sectors E, H, I, J, and M). Referring back to Figure C1, it can be observed that 
the difference between the only annual emissions uncertainty and the total uncertainty is 
particularly low for sectors E, H, and J. This explains why, for Amsterdam, the difference 
between the variability associated with total emission uncertainty and that associated with only 
annual emissions uncertainty is smaller than in the other cities analyzed. 

It is also worth noting that the box plots for many sectors are very narrow. This indicates a low 
variability in the hourly relative error, as previously discussed in Section 6.2.1 and 6.3.1. 
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Figure C1 : Hourly relative emission uncertainties by GNFR sector calculated for the entire 
year 2019. The box plots show uncertainties derived from both temporal factors (Guevara et 
al., 2024) and annual emission uncertainties (Super et al., 2023; 2024), while triangles 
represent the only annual emission uncertainties. The uncertainties refer to the four countries 
corresponding to the cities presented in the case studies of the previous section: Slovakia, the 
Netherlands, Germany, and Poland (from top to bottom). 

 

As a complement to the analysis, Figure C2 presents the relative emission errors as 
incorporated in the ACT model (Tot) in comparison with their individual components: the 
relative error associated with the hourly factors, computed as the error corresponding to the 
daily maximum hourly factor (Max Hourly), the relative error from weekly factors (Weekly) and 
monthly factor (Monthly), and the relative error of annual emissions (Ann). In other words, Tot 
corresponds to the left-hand side of Equation 6.5, while Max Hourly, Weekly, Monthly, and 
Ann represent the four terms on the right-hand side, after being adapted as inputs for the ACT 
model. Figure C2 shows these errors for the four countries discussed above (Germany, the 
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Netherlands, Poland, and Slovakia), aggregated over all hours of the year 2019. It can be 
observed that for many ACT sectors the relative error associated with hourly factors (Max 
Hourly) is the largest contributor to the total error, while the annual emission uncertainty is the 
strongest contributor to the Others sector. More generally, the combined contribution of the 
three temporal factor errors (hourly, weekly, and monthly) exceeds that of the annual emission 
error in most cases (except for Others and Shipping). 
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Figure C2 : Relative errors distributed across ACT sectors: Industry, Traffic, Residential, 
Agriculture, Shipping, and Others (from the top plot to the bottom) for the entire year 2019. 
Each plot presents the total relative error as injected in ACT (Tot), along with its individual 
components: the relative error associated with the hourly factors, computed as the error 
corresponding to the daily maximum hourly factor (Max Hourly), the relative error associated 
with the weekly distribution of emissions (Weekly), and that related to the monthly distribution 
(Monthly), and finally, the relative error of the annual emissions (Ann). 
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