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1 Executive Summary

The Copernicus Atmosphere Monitoring Service (CAMS) currently offers a number of products
to support decision and policy makers in regard to mitigation of air pollution at the European
scale (https://policy.atmosphere.copernicus.eu/). These policy products provide information
about the causes and main drivers of air pollution in European cities, so-called source
allocation/attribution products, and their potential evolution in the future. Overall, better
knowledge of the uncertainties in the sector/source attribution in the CAMS policy products
may help policy makers to make more informed decisions when prioritizing measures for
specific activity sectors.

We have developed methodologies and uncertainty estimates directly relevant for the CAMS
Policy Support Service. More specifically, we have:

e Established uncertainty estimates in CAMS source receptor policy products related to
emissions, model resolution and city area definition

e Established the link to urban scale by developing an in-city variability/correction
estimate for the local plus non-local contribution

How sensitive is the local contribution (city to itself) to the geographical definition of
the city area and the CTM model resolution?

When designing air quality policies, it is important to know how much can be achieved by
targeting local emissions (e.g., from a city planning perspective), and to what extent either
national plans or international agreements should be prioritized. Therefore it is important to
quantify the uncertainty in the local contribution product presented by CAMS.

Our analysis shows that:

° The calculated local contribution is very sensitive to both the model resolution and
the geographical definition of the source & receptor regions, as well as to the
averaging method employed within the receptor area.

° Area-weighted local contributions (as in the current CAMS Policy Support Service)
are systematically lower than population weighted local contributions (as in GAINS)
which again are systematically lower than using the center grid cell as the receptor
(similar to SHERPA & JRC Urban PM.s atlas, although they use the maximum
concentration grid cell). Therefore, the current CAMS Policy Support Service
systematically attributes a smaller responsibility to the cities for its own pollution -
for PM2s, PM1o and NO; than other policy relevant products. For O3, the titration is
highest when using the centre grid receptor and lowest for area weighted receptors.

° Higher model resolution increases the modelled local contribution systematically, by
a factor 2-3 for PM2s, PM1 and NO2 (when increasing resolution from 0.3x0.2
degree to 0.2x0.1 degree). For ozone, the titration by local city emissions is halved.
The resolution of the current CTM models running for CAMS Policy Service was
changed from coarser resolutions (different in each model) to 0.2x0.1 degree from
1.1.2025, partly due to the results discussed here. Note, however, that the total
concentrations (local plus non-local) are not consistently different due to resolution,
except for ozone, where annual ozone is systematically lower in cities with high
titration.

From a policy perspective it is not clear which definitions of source and receptor areas should
be used. On one hand one might argue that using the centre grid (or the grid with maximum
concentration) as receptor is most relevant, as this would ensure that the sources which are
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most important for the worst areas are targeted when planning mitigation actions - in line with
achieving the limit values set in the Ambient Air Quality Directive. On the other hand, using
the population weighted concentrations would be most relevant when policy is acting on
reducing health effects overall. For the source area, it seems most reasonable to choose the
core city area (the administrative area), as this is the area that city authorities can act on. In
the end, the decisions should be made by the users, and the results discussed here are
planned to be presented and discussed at several meetings and workshops during fall and
winter, such as FAIRMODE and the next CAMS Policy User workshop.

Link between regional and urban scales

There have been repeated user requests in the CAMS Policy User Workshops that CAMS
should deliver air quality information at finer spatial resolution, making the results more
relevant for the urban scale. Linking regional and urban scales in the CAMS policy products
will make these products more relevant for policy analysis such as the impact assessments
being done at present for the Ambient Air Quality Directive, where exceedances in hot spot
areas possibly will be driving policy.

In the work undertaken for this deliverable, linkages between urban and regional scales have
been made using a coupled regional and urban-scale modelling system (EMEP/UEMEP).
First, we analysed the impact of resolution by comparing the coarser resolution results in the
present source receptor service with the EMEP model (0.2x0.1 degrees) to fine resolution
results from uUEMEP at 250m for NO, and PM3 s for all the cities in the CAMS Policy Support
Service. For the winter period of 2019, population-weighted mean NO; concentrations
increase on average by 40 %, but it varies importantly between cities, with some cities having
close to no increase at all and others more than doubling. In most cities, the concentrations
calculated at observational sites with uEMEP are closer to the observed mean, although the
NO: concentration is still underestimated on average after downscaling. Also, the spatial
correlation between the stations is strongly improved by the downscaling for nearly all the
cities, and on average it is improved from 0.26 to 0.64 (0.71) when using 250 m (50 m)
resolution and compared to EEA stations.

Furthermore, downscaling with uEMEP to 250 m can give important additional information on
exposure, both by correcting the average population exposure and by accounting for the
variability within the core city that gives rise to higher exposure for a subset of the population.
For instance, the limit value for daily mean NO- concentration (50 ug/m3) in the new European
Ambient Air Quality Directive (AAQD) is exceeded much more frequently after downscaling,
both in terms of the population-weighted mean (238% more days) and for the 95% percentile
(219% more days).

The relative increase in total PM2s concentration due to downscaling is smaller than for NO>
for most cities, on average a 18 % increase. The city-mean bias is improved from -2.7 to -0.9
(-0.6) pg/m3 for uEMEP with 250 m (50 m) resolution, but the spatial correlation is not
systematically improved across the cities. Downscaling mainly has an impact on population-
weighted PM2s in only a smaller number of cities where residential heating has a very large
contribution. The reason for the smaller improvement of PM. s is most probably related to the
quality of the gridded primary PM emissions (and specifically residential heating) as well as
the proxy used to downscale those emissions at European scale. It has been shown that when
using proxy data that are more closely linked to residential combustion, as available for
Norway, the downscaling can give significant improvements.

The number of days above the new AAQD limit value for daily mean PMzs (25 ug/m3)
increases by (only) 31% for the city mean and by 52% for the 95™ percentile. However, the
very high values of daily mean PM2s above 50 pg/m3 (and even 100 ug/m3) occur much more
frequently, particularly in the 95" percentile. Since the downscaling of PM.s does not
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systematically improve performance, this increase in occurrence of very high concentrations
might be less reliable.

Secondly, we set out to develop an operational in-city variability/correction estimate that could
account for the resolution issue (e.g. represent the effect of downscaling EMEP model results
by uEMEP). Our analysis demonstrates that there is a correlation between the stability function
and the variability in increase in traffic NOx contribution when downscaled by uEMEP.
However, it is clear that stability alone cannot reproduce the time variation in the relative
increase in NOy traffic contribution, and the relationship with stability is more of qualitative
nature than a simple one-to-one dependency. This is not surprising, since other factors such
as boundary layer height, wind speed and wind direction will also affect the downscaling. Due
to the important time-variation in the effect of downscaling, it seems overly simplistic to apply
a constant correction factor for each city at all times in the CAMS Policy Support service.

However, it is manageable to run uEMEP downscaling for all the 80 cities included in CAMS
Policy Service for the 4-day forecast horizon operationally. Based on the computation times
of the runs of this study, all cities can be downscaled (to 250m) within 1 hour on a
computational node with 96 parallel CPUs, each with 2 GB memory. If a coarser resolution of
500 m or 1 km was used instead, the computational cost would be lower.

Propagation of emission uncertainties into CAMS Policy Products

The largest single source of uncertainty in air pollution forecasting (and source apportionment)
is likely related to emissions. Although there have been several studies where emission
uncertainties have been propagated into air quality forecasts/source apportionment, to our
knowledge there has been no attempt to generate such information in near-real-time (NRT).
Clearly, such information will be very valuable for interpreting the drivers behind episode
situations, during the episode itself, supporting communication both to the public as well as to
policy makers.

Emission uncertainties have been developed in WP5 of CAMEO: uncertainties in total
emissions per country and sector for NOx, SO, NH3;, NMVOC and PPM, uncertainties in
gridded PPM emissions and uncertainties in the temporal disaggregation of emissions (per
country, sector and component).

Propagation of emission uncertainties have been investigated using two different CAMS Policy
Support source allocation products for cities: i) the potential impact from country and city
emissions and ii) the sector apportionment from the ACT metamodel. In principle, a similar
analytic approach (tailored for CAMS operational applications) has been used for both of them,
although there are some important differences.

City & country contributions to City SR

The propagation of emission uncertainties for the city and country to city SR service is done
analytically for PM.s. We take advantage of the local fraction (LF) calculations done with the
EMEP MSC-W model, where all the derivatives (the change in PM.s due to changes in the
different emissions per country, sector and component) are calculated. In addition, the city-to-
itself contribution is derived. Normally, the number of model runs that would have been needed
if this should be done with Brute Force calculations, reducing one country, sector, and
component at a time (30 (countries) x 5 (components) x 13 (sectors) = 1950 model runs) would
be too large for this to be possible in an operational setting with time restrictions, but with LF
this is computationally feasible . The uncertainties can be calculated by accounting for the
uncertainties attributed to each of the contributions (from each country, sector, component
plus the local contribution) to anthropogenic PM2s concentrations, plus the covariance terms
(or the correlation in uncertainties between all the terms).
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We have explored different correlation structures for the uncertainties (uncorrelated,
correlated across the same sector in different countries and components, and fully correlated).
In general, the correlation structure is important, with the uncertainties in the correlated case
being a factor 2 higher than the uncorrelated case.

Further, we have added the uncertainty related to the temporal breakdown of yearly emissions
(per country and sector) by monthly, day-of-week, and hour-of-day time factors. Since we can
not assume that the temporal uncertainty at time t manifests instantaneously into the
concentration uncertainty at time t, different forms of aggregation methods have been
investigated. Generally we find that the 24-hour rolling window, mean, and median yield
relatively similar results. On the other hand, aggregating the maximum uncertainty results in
the most noticeable change in the total prediction interval.

We have evaluated the method’s performance across selected air pollution episodes in
Europe during 2019. Overall, the approach produces plausible uncertainty estimates, offering
potential value to users of CAMS Policy data products by quantifying the uncertainty
associated. However, there are important limitations to keep in mind. Most critically, the
underlying emissions’ uncertainties themselves are highly uncertain, often due to limited data,
expert judgment, or assumptions in the original inventories. This adds a layer of ambiguity to
any propagated uncertainty estimates. Second, the degree of correlation between emissions
could significantly influence the results, but in practice, the true correlation structure is poorly
understood and rarely quantified.

Leveraging on the metamodel ACT

A similar analytic methodology for propagating emission uncertainties to PM..s concentrations
using the ACT metamodel has been explored, accounting for both uncertainties in temporal
allocation factors and total annual emissions.

The current implementation provides estimates of variability in PM2s concentrations over
major European cities, but the methodology can be readily extended to all grid points within
the modeling domain and to additional pollutants. The method is computationally efficient,
requiring minimal processing time and resources, making it particularly well suited for potential
operational deployment.

Results indicate relatively large propagated errors, which are consistent with the substantial
uncertainties associated with emissions—especially those related to temporal disaggregation
factors. The residential sector is by far the most affected by temporal uncertainties, and
consequently, the total propagated errors are highest in regions and periods where this sector
dominates.

Notable differences arise when comparing the results based on ACT to the method leveraging
on LF in the EMEP MSC-W model. These discrepancies can be attributed to several factors.
While both methods adopt an analytical approach to variance estimation, the results based on
LF in the EMEP MSC-W model also account for some degree of correlation between emission
sources. Further, ACT simplifies the uncertainties taken into account to only be a function of
emission sectors, while the EMEP MSC-W model results takes into account uncertainties per
country, sector and component. Finally, the two underlying models, ACT and the Local
Fraction-based method, differ in the underlying model results for PM2s and the contributions
themselves.
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2 Introduction

2.1 Background

Monitoring the composition of the atmosphere is a key objective of the European Union’s
flagship Space programme Copernicus, with the Copernicus Atmosphere Monitoring Service
(CAMS) providing free and continuous data and information on atmospheric composition.

The CAMS Service Evolution (CAMEO) project will enhance the quality and efficiency of the
CAMS service and help CAMS to better respond to policy needs such as air pollution and
greenhouse gases monitoring, the fulfilment of sustainable development goals, and
sustainable and clean energy.

CAMEO will help prepare CAMS for the uptake of forthcoming satellite data, including
Sentinel-4, -5 and 3MI, and advance the aerosol and trace gas data assimilation methods and
inversion capacity of the global and regional CAMS production systems.

CAMEO will develop methods to provide uncertainty information about CAMS products, in
particular for emissions, policy, solar radiation and deposition products in response to
prominent requests from current CAMS users.

CAMEO will contribute to the medium- to long-term evolution of the CAMS production systems
and products.

The transfer of developments from CAMEO into subsequent improvements of CAMS
operational service elements is a main driver for the project and is the main pathway to impact
for CAMEO.

The CAMEO consortium, led by ECMWF, the entity entrusted to operate CAMS, includes
several CAMS partners thus allowing CAMEO developments to be carried out directly within
the CAMS production systems and facilitating the transition of CAMEO results to future
upgrades of the CAMS service.

This will maximise the impact and outcomes of CAMEOQ as it can make full use of the existing
CAMS infrastructure for data sharing, data delivery and communication, thus supporting
policymakers, business and citizens with enhanced atmospheric environmental information.

2.2 Scope of this deliverable
2.2.1 Objectives of this deliverables
The work described in this deliverable has two objectives:

e Establish uncertainty estimates in CAMS source receptor policy products related to
emissions, model resolution and city area definition

e Generate the link to urban scale by developing a variability/correction estimate for the
local contribution

2.2.2 Work performed in this deliverable

In this deliverable the work as planned in the Description of Action (DoA, WP6 T6.2 and T6.3.3)
was performed.

2.2.3 Deviations and counter measures

No deviations have been encountered.
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2.2.4 CAMEO Project Partners:

ECMWF EUROPEAN CENTRE FOR MEDIUM-RANGE WEATHER
FORECASTS

Met Norway METEOROLOGISK INSTITUTT

BSC BARCELONA SUPERCOMPUTING CENTER-CENTRO
NACIONAL DE SUPERCOMPUTACION

KNMI KONINKLIJK NEDERLANDS METEOROLOGISCH INSTITUUT-
KNMi

SMHI SVERIGES METEOROLOGISKA OCH HYDROLOGISKA
INSTITUT

BIRA-IASB INSTITUT ROYAL D'AERONOMIE SPATIALEDE
BELGIQUE

HYGEOS HYGEOS SARL

FMI ILMATIETEEN LAITOS

DLR DEUTSCHES ZENTRUM FUR LUFT - UND RAUMFAHRT EV

ARMINES ASSOCIATION POUR LA RECHERCHE ET LE
DEVELOPPEMENT DES METHODES ET PROCESSUS
INDUSTRIELS

CNRS CENTRE NATIONAL DE LA RECHERCHE SCIENTIFIQUE
CNRS

GRASP-SAS GENERALIZED RETRIEVAL OF ATMOSPHERE AND
SURFACE PROPERTIES EN ABREGE GRASP

Cu UNIVERZITA KARLOVA

CEA COMMISSARIAT A L ENERGIE ATOMIQUE ET AUX
ENERGIES ALTERNATIVES

MF METEO-FRANCE

TNO NEDERLANDSE ORGANISATIE VOOR TOEGEPAST
NATUURWETENSCHAPPELIJK ONDERZOEK TNO

INERIS INSTITUT NATIONAL DE L ENVIRONNEMENT INDUSTRIEL
ET DES RISQUES - INERIS

IOS-PIB INSTYTUT OCHRONY SRODOWISKA - PANSTWOWY
INSTYTUT BADAWCZY

FZJ FORSCHUNGSZENTRUM JULICH GMBH

AU AARHUS UNIVERSITET

ENEA AGENZIA NAZIONALE PER LE NUOVE TECNOLOGIE,

L'ENERGIA E LO SVILUPPO ECONOMICO SOSTENIBILE
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3 Impact of geographical definition of city as source and receptor and
recommendations for use in CAMS

3.1 Introduction

It is well known that the choices made in terms of geographical definition of sources and
receptor areas (and indicators) for the cities have a large impact on the results in terms of how
much of the pollution that the city itself is responsible for (Thunis et al., 2021).

At present, the geographical city in the CAMS Policy support service is defined as the area
corresponding to the 3x3 grid cells in 0.25x0.125 degree. Previously, the CTM models were
run at this resolution, and although the models are now run on 0.2x0.1 degree for the CAMS
Policy support service(twice the resolution as what is run in the CAMS regional forecast), the
geographical definition is exactly the same (hereafter referred to as 3x3). The definition of the
source area (the area for which the emissions are reduced or labelled) is the same as the
receptor area (the area for which concentrations are averaged). The results on the CAMS
Policy support service are presented as the area weighted concentrations in the city receptor.

Several other definitions of city source and receptor areas are in use, for instance in the work
done with GAINS for the Clean Air Outlook for EU (CAO4, 2025) or the Gothenburg Protocol,
or with the SHERPA modelling tool (e.g. Thunis et al., 2021), see Table 4.1.

In SHERPA (Thunis et al, 2018), the city source area definition is mostly FUA (Functional
Urban Area). Thunis et al, 2018 explains that FUAs encompass both the city core and its
commuting zone, providing a more comprehensive representation of urban emissions and
their impacts on air quality. However, one might argue that using the core city as the source
area is more relevant, as this is the area that city authorities have the power to act on, and
measures can only be applied here.

It has already been demonstrated in Thunis et al, 2021 that using FUA as source area gives
a city contribution or responsibility to PM.slevels (yearly levels) that is approximately twice
as large as using core city as the source. In both cases the grid with the maximum
concentration was chosen as the receptor, thus the impact from a larger area (FUA) is by
definition larger than the impact of a smaller area (city core) to the same receptor.

In our work we have investigated the sensitivity to different definitions of source and receptor
areas of the total contribution as well as the city contribution (not only the max or centre grid
cell). Furthermore, we extended the work to cover all of the species for which results are shown
in the CAMS Policy Support Service: PM2s, PM1o, NO2 and Os.

The main goal of this work has been to demonstrate how sensitive our results are to these
choices and to recommend how this should be done in CAMS2_71. We have also investigated
the impact of using different resolutions in the CAMS Policy Support Service. The results and
recommendations from the work on resolution have already partly been used as basis for
changes implemented in CAMS2_71 recently (i.e. all the models in the CAMS Policy Support
Service are now running on 0.2x0.1 degree resolution).
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Table 3.1 Overview of source and receptor definitions used in the CAMS Policy
Support Service, JRC Urban Atlas (Thunis et al., 2017) and GAINS (Amann et al.,
2011)

City source definition City receptor definition
CAMS Policy Support 3x3 grids (0.25x0.125 3x3 grids (0.25x0.125),
degree) area weighted

concentration mean

JRC PM2.5 Urban Atlas City Core, FUA, Urban Grid with maximum

Audit, 2021 concentration

GAINS City Core, FUA (GHS Population weighted
Urban Centre Database, concentration in core city
Florczyk et al., 2019 ) (but only primary PM is

considered for the city
contribution to itself)

3.2 Experimental setup

The EMEP MSC-W model version rv5.0 has been used for work in this deliverable. The
horizontal resolution is 0.2x0.1, with 20 vertical layers (the lowest with a height of
approximately 50 meters), unless otherwise stated.

Meteorology, emissions, boundary conditions and forest fires for 2019 have been used as
input. Boundary conditions come from the CAMS global reanalysis (EAC4) for 2019
(doi.org/10.24381/d58bbf47, Iness et al., 2019), read every 3 hours. Meteorological data is
taken from the ECMWF-IFS operational 12 UTC meteorological forecasts for 2019 (ECMWF-
IFS 45r1 until June 11 and 46r1 from June 12th). Anthropogenic emissions are taken from the
CAMS REG AP v6.1 emission data set. The forest fire emissions are taken from GFAS v1.2
(Kaiser et al., 2012, doi.org/10.24381/a05253c7), while the model also includes climatological
ocean DMS and soil-NOx emissions. For temporal distribution of the emissions for the year
2019, the CAMS-REG-TEMPO v4.1 was used.

All anthropogenic emissions were reduced city by city (by 15%, all emissions at the same
time) for all the 79 cities shown on the CAMS Policy User interface. The difference between
the base run (full emissions) and the city reduction runs were used to quantify the city
contribution by multiplying by 100/15. Other anthropogenic contributions were calculated by a
model run where all anthropogenic emissions were reduced by 15%, and the city contribution
was removed. The ‘rest’ contribution is defined as the base run minus the anthropogenic
contributions.

We have investigated using 3 different definitions for the source area:

e Corresponding to 3x3 grid cells in 0.25x0.125 degree (the setup used in CAMS Policy
Support Service when this work started)

e Core city (Urban audit, 2021) - also used in the JRC Urban Atlas for PM2 5

e Functional Urban area (Urban Audit, 2021) - also used in the JRC Urban Atlas for
PMa )

Furthermore, we analyzed results when using the following definitions of the receptor area
(where core city area or FUA are chosen as source areas):

e Area weighted core city
e Area weighted FUA
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e Population weighted core city
e Population weighted FUA
e 1-grid (the geographical mid-point)

The population data is Global Human Settlement Layer (GHSL) 2020, described in Pesaresi
et al, 2024. In addition, model runs with a selection of the definitions above have been run
with a resolution of 0.3x0.2 in order to investigate the impact of resolution.

3.3 Results
3.3.1 Differences due to source area definition

In SHERPA (Thunis et al, 2018), the city source area definition is mostly FUA. Thunis et al,
2018 explains that FUAs encompass both the city core and its commuting zone, providing a
more comprehensive representation of urban emissions and their impacts on air quality.

One might argue that using the core city as the source area is more relevant, as this is the
area that city authorities have the power to act on, and measures can only be applied here.

It has already been demonstrated in Thunis et al, 2021 that using FUA as source area gives
a city contribution or responsibility to PM.slevels (yearly levels) that is approximately twice
as large as using core city as the source. In both cases the grid with the maximum
concentration was chosen as the receptor, thus the impact from a larger area (FUA) is by
definition larger than the impact of a smaller area (city core) to the same receptor.

In our work we have looked at different city source definitions, but we also apply other receptor
definitions (not only the max or centre grid cell). Furthermore, we extended the work to cover
all of the species for which results are shown in the CAMS Policy Support Service: PM2s PMyq,
NOz and 03.

Figure 3.1 shows box quantile diagrams summarizing the city contribution to PM.s (top) for
the 79 cities investigated. Similar to Thunis et al, 2021, we find that the city contribution to
PM:2s is about 30% when the source area is FUA and the centre grid is receptor (assuming
that in most cases the centre grid would be equal to the grid with highest concentrations). This
is reduced to a bit less than 20% when the core city is used as a source area. For the source
definition used in CAMS2_71 (3x3 grid), the relative city self contribution is more similar to
using FUA (a mean of around 27%), probably because the 3x3 grid area is more similar in
size to FUA than to the core city. When the source area and the receptor area are the same,
the core city definition systematically gives lower local fraction - between 12-15 percent
depending on whether results are area weighted or population weighted.
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Figure 3.1 Box quantile diagrams summarizing the local contribution to PM25s, NO- | primary
PMz5s and Os. concentrations for the 79 European cities, For each of the 3 plots, the receptor
is the same: from left: 1) area weighted receptor = source, 2) population weighted receptor =
source and 3) centre grid cell. Within each plot, sources (and model resolution) vary: ‘3x3 14
km’ means that the city source area is defined by 3x3 grid cells in 0.25x0.125 degree model
resolution, ‘0.2x0.1 city’ means that core city area is the source and the model is run in 0.2x0.1
degree resolution, ‘0.3x0.2 city’ means that core city area is the source and the model is run
in 0.3x0.2 degree resolution and ‘0.2x0.1 FUA’ means that FUA is the source area and the
model is run in 0.2x0.1 degree resolution. The box borders show the 10th and 90th percentile
and the two extremities are the max and min values. The horizontal line within the box
represents the median.

For NO- (Figure 3.1, second row), the contribution from the city itself is substantially higher.
When the city is defined by FUA, and the centre grid is the receptor, the median yearly
contribution (of the 79 cities) is around 70%. For NO- as for PM., the results for the 3x3 grid
are very similar to those of FUA to the centre grid. Using core city as the source area brings
the city responsibility down to around 40%, and lowest for the area weighted receptor.

For reference, we also show the results for primary PMas (third row). Since this is a primary
species, it shows very similar results as NO; in terms of the local contribution from the city,
e.g. 60% in the centre grid cell comes from FUA (against 70% for NO2) and 35% from core city
(against 47% for NO>).

For ozone (bottom row, Figure 3.1), the city contribution is always negative. FUA has the most
negative impact in general, except for the area weighted results where the core city to core
city is most negative. For the population weighted receptor results and for the centre grid
receptor results, the contribution from the city is around - 8-12% (except for the coarser
resolution runs, where titration is smaller).

The appendix includes also figures for PM1o, primary PM1o and the secondary species SOa,
NOs and NHsa.

In Figure 3.2 we show how the city contribution varies with time when using the core city
(upper row) or FUA (bottom row) as source (example for Amsterdam March 2019). The
receptor is either the same as the source (area weighted or population weighted) or the centre
grid cell. Typically, the local contribution is higher for FUA than for core city, although in these
plots it is mostly clear for the plots where the receptor is the centre grid cell.
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3.3.2 Differences due to receptor area definition

In the current CAMS Policy Support Service, the geographical definition of source and receptor
is the same, and the results are provided as area weighted means.

Thunis et al, 2021 argues that using the grid cell with highest concentration (the ‘worst case
receptor’) as the receptor ensures that the model targets the exceedance zones most
effectively, in line with EU Directive 2008/50/EC. In our work we have used the centre grid cell
instead of the grid with the maximum concentration, since we were also looking at finer time
resolution (e.g. daily), and it was impractical to sample the maximum concentration in grid
when the selected grid was varying between time steps. However, with the resolution here
(0.2x0.1 degree), the centre grid and the grid with maximum concentration is in most cases
the same.

Figure 3.3 compares results for local contribution to daily, monthly and yearly concentrations
of PM_ s, using either the centre grid cell as receptor, the area weighted mean or the population
weighted mean of the core city (the source is always core city).

Clearly, local contributions are highest for the receptor being the centre grid cell and lowest
for the area weighted mean, with the population weighted mean in between. This can also be
seen from Figure 3.1, where FUA to the centre grid has a median local contribution of 30%,
FUA to population weighted FUA 27% and FUA to area weighted FUA 18%. Similar numbers
for core city as source is 18% (centre grid receptor), 16% (population weighted core city) and
13% (area weighted core city).

The box quantile diagram for NO> (and PPM2s) shows a similar picture, where the local
fraction for FUA, core city or 3x3 to the receptor always follow centre grid > population

D6.2 15



CAMEO

weighted> area weighted for the receptor.

For ozone, the centre grid as a receptor always gives the largest negative impact of the city,
with the population weighted results being quite similar. Area weighted receptor areas in
general give smaller negative impacts of the city, probably because population density is
highest near roads where NOx emissions are highest.
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Figure 3.3: Contribution from local (core city) emissions to concentrations of PM2s (ug/m3) in
receptor areas, where the receptor is defined as 1 grid cell in the middle of the core city (1
grid-cell), or as area weighted concentrations in the core city (area weighted) or population
weighted concentrations in core city. All the model runs have been performed in 0.2x0.1
degree resolution.

3.3.3 Differences due to resolution

When the work that is described in this deliverable started, the models for the CAMS Policy
Service were run with a resolution of 0.25x0.125 degree (for the EMEP MSC-W model, for
LOTOS EUROS 0.4x0.2 degree). Running the service with higher resolution costs much more
CPU, and in addition it takes longer time (thus it is more difficult to comply with the restrictions
on when results have to be ready on the CAMS Policy User interface every day). Therefore,
we wanted to quantify how different the results would be in finer resolution to those running at
the Service. We chose 0.2x0.1 degree as the finer resolution as a compromise between what
is possible to achieve in practice (being able to provide results in time) and the need to improve
the resolution. We compared this resolution (0.2x0.1) to 0.3x0.2, which was a compromise
between the resolution run by the EMEP MSC-W model and LOTOS EUROS model.

In Figure 3.4 we compare yearly average total concentrations for PM; s for all 79 cities at the
two resolutions (and in 3.6 for daily, monthly and yearly resolutions). Concentrations are given
both as the concentrations for the centre grid, area weighted concentrations for the core city
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and population weighted concentrations for core city. Overall the results are rather similar (i.e.
no systematic differences). In Figure 3.5 we show a similar plot for the local contribution to
PMa;s in the 79 cities. Clearly, resolution is much more important for the local contribution,
where the 0.2x0.1 results show systematically higher contributions for the finer resolution. This
is not surprising, as the lower resolution tends to smooth out the emissions in the core city.
Because local contribution is an important aspect of the CAMS Policy Support Service, we
recommended to CAMS2_71 to increase resolution in the upgrade that was done in the winter
2024/2025, and the Service is now running with 0.2x0.1 degree resolution for all the products.

Figures A2 to A7 in Appendix A show results for NO2 and Os. For NOg, the plots clearly show
a similar picture as for PM_s - that the local contribution increases with resolution. For ozone,
increasing resolution increases the titration, and the negative contributions of the city becomes
larger (also described in the previous section and visualized in Figure 3.1). Figure A4 in the
Appendix shows that for the cities with the most titration (and lowest yearly annual ozone
concentration), for instance Rotterdam, Amsterdam and Antwerp, the highest resolution
systematically gives lower ozone concentrations. This is the case for all cities up to yearly
concentrations of about 55-60ug/m3. It might be that those effects are different in summer and
winter (e.g. titration is largest in winter), but we have not looked further into such effects here.
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Fig 3.4: Total contribution/concentration (ug/m3) to PM2s concentrations in European cities
(x-axis for 0.2x0.1 degree resolution, y-axis for 0.3x0.2 degree resolution). The city source
areas are the core city area, but the receptor area is either the mid-grid cell, area weighted
concentrations for the core city or population weighted concentrations for the core city. The
size of the circles represent the total concentrations.
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Figure 3.5: Local contribution (ug/m3) to PM2 s concentrations in European cities (x-axis for
0.2x0.1 degree resolution, y-axis for 0.3x0.2 degree resolution). The city source areas are
the core city area, but the receptor area is either the mid-grid cell, area weighted
concentrations for the core city or population weighted concentrations for the core city. The
size of the circles represent the size of the local contribution.
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Figure 3.6: Effect of resolution on local PMz s contributions (ug/m3). The source area is
always the core city area, the receptor area is either the centre grid cell, area weighted
concentrations in core city or population weighted areas in core city. Left column: Daily data
for 2019, middle column: monthly data for 2019, Right column: Yearly average data.

3.3.4 Conclusions

We have investigated how sensitive the local contribution to the city is (i.e. how much of the
pollution in the city that the city is responsible for itself) to the definition/choice of source and
receptor area for the cities run in the CAMS Policy Support Service. We have also analyzed
the sensitivity of the results to the resolution of the chemistry-transport model. We found that:

° The calculated local contribution is very sensitive to both resolution and
geographical definition of source & receptor region, as well as to the averaging
method employed within the receptor area

° Area weighted local contributions (as in the current CAMS Policy Support Service)
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are systematically lower than population weighted local contributions (as in
GAINS) which again are systematically lower than using the centre grid cell as the
receptor (similar to SHERPA & JRC Urban PM; s atlas). Therefore, the current
CAMS Policy Support Service systematically attributes a smaller responsibility to
the cities for its own pollution - for PM2s5, PM1g and NO than other policy relevant
products. For O3, the titration is highest when using the centre grid receptor and
lowest for area weighted receptors.

° Higher model resolution increases the modelled local contribution systematically,
by a factor 2-3 for PM.s, PM1o and NO; (when increasing resolution from 0.3x0.2
degree to 0.2x0.1 degree). For ozone, the titration by local city emissions is
halved. However, the total concentrations are not consistently different due to
resolution, except for ozone, where annual ozone is systematically lower in cities
with high titration.

From a policy perspective it is not clear which definitions of source and receptor that should
be used. On one hand one might argue that using the centre grid (or the grid with maximum
concentration) as receptor is most relevant, as this would ensure that the sources that are
most important for the worst areas are targeted when planning mitigation actions - in line
with achieving the limit values set in the Ambient Air Quality Directive. On the other hand,
using the population weighted concentrations would be most relevant when policy is acting
on reducing health effects overall. For the source area, it seems most reasonable to choose
the core city area (the administrative area), as this is the area that city authorities can act
on. On the other hand, in most cities there are a lot of emissions in the surrounding areas
(FUA) that are contributing to pollution in the city, and knowledge about the size of this
contribution would be useful. In the end the decisions should be made by the users, and
the results discussed here are planned to be presented and discussed at several meetings
and workshops during fall and winter, e.g. FAIRMODE and the next CAMS Policy User
workshop.
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4 Impact of fine scale resolution (down to urban scale) and development
of local sub-grid scale correction

4.1 Introduction

In the CAMS Policy support service, the EMEP model simulates the emission and dispersion
of air pollutants at a horizontal resolution of 0.2° x 0.1° (or approximately 12 km), and a vertical
resolution of ca. 50 m near the surface (the lowest layer is 50 m thick). For long-transported
air-pollution this resolution can be sufficient for capturing the resulting concentrations in a city.
However, for locally emitted air pollution, the concentrations will vary on a much finer scale
due to non-uniform emissions. Particularly for emissions close to ground level, such as from
road traffic, there will be important horizontal gradients in concentrations within a city on much
finer scales than the EMEP model on 0.2° x 0.1° can resolve. Moreover, the limited vertical
resolution results in the model immediately mixing low-level emissions throughout the first 50
m, which can lead to underestimation of surface concentrations from sources emitted at
ground level, as well as overestimation of elevated sources.

In CAMEO tasks 6.2.2-6.2.3 we investigate how the small-scale variability in concentrations
within a city, and therefore also in population exposure, could be better represented in the
CAMS Policy support service. We apply the uEMEP model (Denby et al., 2020) to downscale
the EMEP results to a spatial resolution of 250 m using proxy data, and combine this with
population density data from the Global Human Settlement layer (Pesaresi et al., 2024) to
calculate the exposure distribution (at home address). As metrics for the population exposure,
we will mainly focus on the population-weighted mean concentration and on the 95-%
percentile (i.e. the concentration exceeded at the home address of 5 % of the city population).
As definition of the city, we will use the core city polygons defined for the Urban Audit 2021
(as described in section 3.2).

Investigations are done for NO, and PM.s. The focus is primarily on NO>, since this is the
pollutant most dominated by local sources emitted near ground level, especially road traffic.
Previous work also found that downscaling of NO, with uEMEP gave important improvements
in model performance at EEA stations, while improvements in PM were limited (Mu et al.,
2022).

4.2 Experimental setup
4.2.1 EMEP model

The EMEP model is run from 1. January 2019 to 28. February 2019. The setup is the same
as described in section 3.2, except that the CAMS emissions have been replaced with reported
EMEP emissions for the year 2019 as used in the EMEP status report 1/2023. This was
chosen due to a known problem with the gridding of NOXx traffic emissions in the CAMS REG
AP v6.1 emission dataset that leads to too little emissions being distributed to the cities, which
was found by comparing to bottom-up emission inventories (personal communication with
Jeroen Kuenen). Temporal profiles of emissions are not changed.

The EMEP model also calculates and outputs local fractions, which track how much of the
primary PM and NOx concentrations in the lowest model layer of each grid cell that was
emitted in the cell itself and in each neighboring cell in each GNFR sector (Wind et al., 2020)".
This local fraction data is needed to avoid double-counting of the local contributions modelled
by uEMEP.

"This is the simplified local fractions method, which only tracks primary emissions from
neighboring grid cells. A more complex method is used in chapter 5, which includes secondary
species and sensitivities to chemical reactions.
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Since the EMEP model in this setup is run with zero concentration initial conditions, the first
week of the simulation is not used. The period considered for analysis is therefore 8. January
— 28. February 2019.

4.2.2 uEMEP model

The urban EMEP (UEMEP) model (Denby et al., 2020) is a Gaussian plume model used to
downscale EMEP model output to high resolution. The PM.s and NOx concentrations are split
into a local contribution that is recalculated with high resolution, and a non-local (or
background) concentration that is interpolated from the EMEP model. This calculation is done
independently at each receptor location. So although the downscaling can be done for a grid
(mapping), it can also be done for individual locations, which can be used for validation at
measurement sites with a reduced computational cost. This is used to evaluate the impact of
using higher resolution for dispersion of traffic emissions, as described in section 4.2.3.

The first step is to generate fine-resolution emissions of PM2sand NOx. In the setup used in
this study, uEMEP does this by distributing hourly gridded emission data outputted by the
EMEP model to a finer resolution grid using proxies. The proxy data is open street maps for
road traffic (GNFR-F), population density for residential heating (GNRF-C), and AIS data for
ship emissions (GNFR-G), all available on 250 m resolution (Table 4.1). The details of these
proxy data are explained in Mu et al. (2022). However, an important difference from the
approach in Mu et al. (2022) is that downscaling is done for hourly emissions rather than
annual total emissions. We have also used a more recent dataset for population density.

Sector Proxy Emission Comment
height (m)
C - Residential Population density year 2020 from 15+ 10 Downloaded at 3 arcsec
combustion the Global Human Settlement resolution and aggregated to a
dataset (Pesaresi et al., 2024) 250 m grid
F - Road Open street map (OpenStreetMap 111 Weighting of emissions using
transport contributors) road type according to Mu et al.
(2022)
G - Shipping AIS based emission data provided 45+ 20 Emission vertical profile based
by the Coastal authorities of Norway on STEAM
(Kystverket, 2020) emission model (Jalkanen et al.,
2009)

Table 4.1: Proxy data used to downscale emission from each of the three sectors, and the emission
height used in Gaussian plume calculations for each sector (z indicates the initial spread of the plume).
Based on Table 1 in Denby et al. (2024).

The second step is to disperse these fine-scale emissions. The dispersion is modelled as
individual Gaussian plumes between the receptor and each emission grid-cell within a 2x2
EMEP-cell area around it?. Emission height is constant for each sector and assumed at 1 m
for traffic, 15 m for residential heating at 45 m for shipping, with some initial spread (Table
4.1). Receptor height is 2 m for gridded calculations and 3 m for calculation at measurement
stations. For details of the Gaussian plume calculation, see section 3 in Denby et al. (2020).

The third step is to calculate the contribution from everything that is not downscaled, which is
referred to as “non-local”. This includes all sources further away than the 2x2 EMEP-cell area
around the receptor, in addition to all sources in GNFR sectors that are not downscaled, as
well as natural sources. The non-local contribution is calculated by subtracting the local
fraction data outputted by EMEP from the total EMEP concentration in the lowest model layer,

2 This local area is always centered at the receptor. When the receptor is not at the centre of an EMEP
grid cell, the 2x2 cell area will cover fractional parts of the actual EMEP grid cells.
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after interpolating (area-weighted) to the receptor location. For details, see section 2.4 in
Denby et al. (2020).

No chemistry is included in the local dispersion calculations, except for the NO,-Os interaction,
which is modelled using the weighted timescale approach documented in section 3.4 of Denby
et al. (2020). This means that the uUEMEP model will modify the contribution from primary PM,
while the contribution from secondary PM remains unchanged and is included in the
“nonlocal’.

4.2.3 Calculation areas

UEMEP is run for the core city of each of the 79 cities shown on the CAMS Policy support
service. For studying population exposure statistics in a city, downscaling is done for a
receptor grid of 250 m resolution. The projection used for the grid is the European ETRS89-
LAEA projection (EPSG: 3035), commonly used for European mapping. For each city, a
rectangular area covering the full core city polygon is downscaled, but when calculating
statistics, only the 250-m cells whose centre is inside the polygon are included. Population-
weighted mean and percentiles of population exposure are calculated by weighting the
concentration in each 250m x 250m grid-cell within the core city polygon with the GHS
population density data. This high-resolution population sampling is also done when statistics
of the original EMEP concentration are calculated (i.e. EMEP grids partly within a core city
polygon will be weighted with the population of that cell that is within the polygon).

For model evaluation against EEA stations (see section 4.5), downscaling is calculated for the
locations of each station. For these station calculations, we also perform separate uEMEP
calculations where the Open street map is sampled at 50 m resolution rather than 250 m. This
strongly increases computational cost, but may improve the representation of traffic stations
in particular. The residential heating and shipping are modelled at 250 m resolution in both
cases. The validation against low-cost PM2s sensors (section 4.6) is instead done by
interpolating UEMEP results from the mapping runs at 250 m resolution, since these stations
are more numerous and it was decided to include them in this study at a late stage of the work.

4.3 Average effect of downscaling
4.3.1 NO:

Figure 4.1a shows the population-weighted mean NO, concentration averaged over the 52-
day period in each core city. It also shows how much of the NO, concentration is attributed to
the local downscaled emissions from each of the three downscaled sectors and to the nonlocal
contribution®. In most cities, the downscaled emissions contribute more than half the NO,
concentration. Road traffic is the most important of these in most cities, though residential
combustion also gives an important contribution. Shipping is important only in a smaller
number of cities.

Figure 4.1b shows the relative increase in average NO2 concentration due to downscaling.
Averaged over all cities, the increase is 40 %, but it varies importantly between cities, with
some cities having close to no increase at all and others more than doubling. Figure 4.1b also
shows the relative increase in NOx, which is significantly higher than the increase in NO. for
some cities. This is due to the nonlinearity of NO2 with more NOx already present, less of the
emitted NO will react with ozone to NO». The differences in increase in NO2 and NOx can be

3 The NO2 source contributions are calculated from the NOx source contributions in the following way:
The nonlocal NO2 contribution is calculated by photostationary approximation after removing the local
NOx contribution from the downscaled sectors. Then the local NO2 contributions are calculated by
repeating chemistry calculations for when one sector is removed at a time, finally normalising the local
contributions so the sum of local and nonlocal NO2 contributions add to the total downscaled NO2.
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much larger than shown in the figure when considering areas and time periods with particularly
high NOx concentrations.

In Figure 4.1c-e we investigate the increase of each of the downscaled sectors individually.
For this we consider NOx rather than NO. This is because the sector-wise increase in NOz is
not trivial to define, due to interaction between the sectors from nonlinear ozone chemistry,
while NOx can be easily split into sectors since NOXx is linear in uEMEP. We compare the
downscaled contributions calculated by uEMEP to the original local EMEP contributions.
These EMEP contributions are what uEMEP replaces, and they are calculated by spatial
interpolation of the local fraction data. Averaged over all cities, the traffic contribution is
increased by 154 %, the residential heating by 96 %, while shipping is reduced by 59 %. For
shipping, we have excluded cities where the shipping contribution in EMEP is less than 0.5
Mg/m3, to avoid these insignificant cases to influence the city mean. The combined effect of
downscaling the three sectors is an increase of 54 % in total NOx concentration, which
becomes a 40 % increase in total NO2 concentration. Although the general pattern of an
increase in traffic and residential heating contribution and a decrease in shipping contribution
is consistent among the 79 cities, there is a lot of variation in the magnitude of the increase.

These differences between cities in the effect of downscaling can have several reasons. First,
the correlation between population density and downscaled concentrations could vary
between cities, especially for traffic whose proxy is not population density. If we redo the
comparison for a simple area-mean over the city instead of population-weighted mean, the
average increase from downscaling is smaller (traffic +113 %, heating +32 %, shipping -67 -%,
total NO2 +27 %), but most of the differences between cities remain (not shown).

Second, the different cities could have different meteorological conditions affecting the
dispersion of pollution, in particular the vertical stability, whose effect is better captured in
uEMEP than in EMEP due to the vertical resolution (see examples in section 4.4).

Third, the subsampling of EMEP grid cells partly within the city polygon can itself lead to higher
average concentrations in the cell after downscaling, since in such grid cells the emissions
can be expected to be mostly in the fraction of the cell that is inside the core city, leading to
higher concentrations there than in the cell average. This effect might also be different
between cities, depending on the size of the city and the gradient of emissions at its boundary.
Many of the cities with the largest increase in local contributions are indeed small core cities,
where these boundary effects might be an important factor.

4.3.2 PM2s

Figure 4.2 shows the same statistics of downscaling for PM2s as Figure 4.1 shows for NO..
For PM2;s it is simpler to distinguish the local sector contributions since nonlinear chemistry is
not involved in the downscaling and local contributions here only include primary PM. Most
cities either have very little local contribution or it is dominated by residential heating (Figure
4.2a). The relative increase in total PM2.s concentration due to downscaling is smaller than for
NO-for most cities, on average a 18 % increase, even though the relative increase in the traffic
and residential heating sectors are on average 155 % and 114 %, respectively. Downscaling
mainly has an impact on population-weighted PM2s in a smaller number of cities where
residential heating gives a very large contribution.
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(a) Source allocation of NO2 after downscaling
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4.4 Time series examples for NO2

Figure 4.3 shows an example of the downscaling of NO; for a 10-day period in Berlin, showing
a map of time-averaged concentration before and after downscaling. Most of the core city is
covered by only four EMEP model grid cells, so the EMEP model can only capture the large-
scale variability, with higher concentrations in the city centre than in its peripheries. Much more
details can be seen in the downscaled concentrations, particularly elevated concentrations
near the main roads. While the highest concentration in the EMEP model is only around 28
Mg/m3, in uEMEP some areas have a concentration as high as 45 ug/ma3.

Figure 4.4a shows the time series of population-weighted mean concentration in the same
period, before and after downscaling, as well as the 5-95 % range in population exposure
(shaded). Observational time series from EEA stations (see section 4.5) are super-imposed,
color-coded for station type. Since in particular traffic stations are located in the highest
concentrations, the maximum value from uEMEP (among populated 250m x 250m cells) is
also shown.

First, we can see that although the population-weighted mean concentration is higher in
uEMEP than in EMEP on average, there are also many times where they are very similar to
each other, or even lower in uEMEP. The 95-% percentile is also higher in uEMEP than EMEP
in many cases, especially when the mean is higher, though there are also periods when it is
similar to the 95-% percentile from EMEP (which normally corresponds to the EMEP grid with
highest concentration). The city-max concentration from uEMEP, however, is usually much
higher than uEMEP 95-% percentile. This can be because the areas of strongly elevated NO-
concentration along the main roads, though very clearly visible in Figure 4.3b, may not
constitute as much as 5 % of the population.

Even with the downscaling, it seems the model underestimates the NO concentration in this
particular episode. This is also found from direct comparison to observations at station
locations (not shown). This is likely not only due to local sources, though, since there is also
underestimation at night, indicating that background concentrations are also too low.

Figure 4.4b further investigates the population-weighted mean NO: concentration and its
increase by downscaling, and splits the downscaled concentration into contributions from
downscaled sources and the nonlocal (similar to Figure 4.1a). As noted above, the
concentration is strongly increased by downscaling in some periods, while in others it is close
to what we get directly from the EMEP model. The increase from downscaling seems to occur
especially during the afternoon, when also the contribution from local road traffic peaks. There
is also a lot of variability from day to day, with some days having very little effect of downscaling
and other days having a large increase. Residential heating contribution also has a peak
slightly later in the evening, which might also contribute to the larger effect of downscaling.

One possible reason for the strong time-variability in the effect of downscaling is the stability.
When the boundary layer is stable, pollution emitted near the ground will mix vertically more
slowly than when it is unstable. While EMEP will immediately mix the emissions throughout
the lowest layer (~50 m thick), uEMEP accounts for the mixing taking longer when it is stable
through the Gaussian plume formula, which would give rise to higher surface concentrations
in uEMEP than EMEP in stable conditions. To explore the stability as an explanation, Figure
4.4c shows the uEMEP-to-EMEP ratio in population-weighted mean contribution to NOx from
road traffic (i.e. a value of 1 means they are the same), and super-imposed is the stability
function for heat as outputted by EMEP. The stability function is bigger than 1 in stable
conditions and smaller than 1 in unstable conditions. We see there is a clear relationship
between the two, with the large increases in NOx traffic contribution corresponding to the most
stable conditions. The sharp increases in the ratio in the afternoon coincides with the boundary
layer transitioning from stable to unstable. In the first few days of the period, the stability was
not so strong, and then downscaling only weakly increased the NOx traffic contribution,
sometimes even decreasing it. The squared correlation coefficient between the stability
function and the NOx traffic relative increase in the time series shown has a coefficient of
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determination of r’=0.60. However, the relationship is not perfect. For example, there is a
tendency for stability to remain high late in the evening, while the NOx traffic increase goes
down. This is also when the traffic emissions drop, so one possible explanation is that local
NOx emitted earlier in the evening is still present in EMEP; this contribution from earlier cannot
be included in uEMEP since the Gaussian plumes are in steady-state with no memory of
emissions at previous times.

1e6 (a) SURF_ug_NO2 1e6 (b) no2_concentration
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Figure 4.3: NO2 concentration averaged over the period 10.—19. February 2019 in Berlin: (a)
Original concentration in EMEP with no downscaling. (b) Downscaled concentrations from
uEMEP at 250 m resolution. The core city boundaries are indicated by the black polygon.
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(a) NO2 concentration (population mean and 5-95 %)
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Figure 4.4: Modelled NO; concentration in Berlin core city hour-by-hour 10.—19. Feb 2019: (a)
Population-weighted mean (thick line) and 5-95% percentile range of population exposure
(color segments) in EMEP (blue) and uEMEP (red), as well as the uEMEP populated receptor
grid-cell with the highest concentration (dashed red line). Super-imposed are measurement
stations (thin dashed lines) and median of stations (dots). (b) Population-weighted mean
concentration in uEMEP, split into contributions from each downscaled sector and from
nonlocal, as well as population-weighted mean concentration in EMEP (dashed line). (c) The
ratio of EMEP and uEMEP NOx contribution (population-mean) from local road traffic (black)
super-imposed on the time series of the stability function at 10 m calculated in the EMEP

model (blue).
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(a) NO2 concentration (population mean and 5-95 %)
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Figure 4.5: Same as Figure 4.4, but for Lisbon core city.

Figure 4.5 shows the same time period for Lisbon. Here we also see that the model tends to
be lower than the observed NO: concentrations, but after downscaling, the population-
weighted mean concentration becomes significantly higher in several of the afternoon peaks
that can be seen in the station observation median. The uEMEP max concentration also peaks
relatively close to the station with highest observation (although it could be different locations
inside the core city). Also for Lisbon, traffic is the most important of the three downscaled
sectors, although residential heating and shipping sometimes contributes significantly, too.
Just as in Berlin, the increase in NOx traffic contribution from downscaling varies importantly
in time and peaks in the afternoon at the same time as the strong increase in stability (Figure
4.5¢). In this case r?=0.34, so not as strong a relationship as in Berlin.
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(a) NO2 concentration (population mean and 5-95 %)
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Figure 4.6: Same as Figure 4.4, but for Sofia core city.

A third example is shown in Figure 4.6, for the core city of Sofia, which is one of the cities with
the largest increase in NO2 from downscaling. In this case, the uEMEP concentration is higher
than the EMEP concentration for the whole period, but the increase is very variable in time
also here. The peaks in uEMEP concentration appear to correspond well with the peaks in
median observed concentration (Figure 4.6a). The variability in the increase in traffic NOx
contribution also has an association with stability in this case (Figure 4.6c).

Looking at all the 79 cities, we can see a similar association between the stability function and
the variability in increase in traffic NOx in most of them (not shown). However, it is clear that
stability alone cannot reproduce the time variation in the relative increase in NOx traffic
contribution, and the relationship with stability is more of qualitative nature than a simple one-
to-one dependency. This is not surprising, since other factors such as boundary layer height,
wind speed and wind direction will also affect the downscaling. Due to the important time-
variation in the effect of downscaling, it seems overly simplistic to apply a constant correction
factor for each city at all times in the CAMS Policy support service.

4.5 Model evaluation against EEA stations

The concentrations are evaluated against measurement data from the validated and reported
dataset for 2019, received from the EEA in early 2024. All stations located within the 79 core
cities are included for validation if they have a data coverage of at least 75 % in the period
8.1.2019 — 28.2.2019. This gives a total of 491 stations for NO2 and 163 for PM.s. However,
many cities have a small number of stations. For a more robust validation of city spread, only
cities with at least 5 stations, including at least 1 traffic station and 1 background station, are
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included. This leaves 30 cities for NO2 and 12 for PM.s. For each hour with measurements,
the measured concentration is compared to the corresponding modelled concentration at the
station, both before downscaling (surface concentration output from EMEP) and after
downscaling (UEMEP).

451 NO:

Figure 4.7 shows the validation of NO.. Figure 4.7b shows that uEMEP gives an increase in
the mean NO2 concentration in most cities, which in most cases brings the concentration
closer to the observed mean, although the NO. concentration is still underestimated in
average after downscaling. The average bias goes from -12.0 uyg/m3 in EMEP to -5.3 (-4.4)
pug/m3 in UEMEP run at 250 m (50 m).

Figure 4.7c shows the variability between stations within each city, quantified as the difference
between the station with highest and lowest period-mean concentration. In mean over the
cities, the observed spread is 32.8 pg/m3, which is almost as high as the observed average
(38.3 ug/m3), so variability within the cities is clearly important. In most cities, the observed
variability is larger than in the model, even after downscaling. However, the spatial correlation
between the stations (Figure 4.7d) is strongly improved by the downscaling for nearly all the
cities, and on average it is improved from 0.26 to 0.64 (0.71) when using 250 m (50 m)
resolution. It is as expected that the 50 m resolution improves the representation of traffic
stations relative to 250 m resolution. Note that the clear outlier Zargoza, where spatial
correlation is negative, has rather small spatial spread as well.

Figure 4.7e shows the station mean of temporal correlation in each city, which is an indication
of whether the higher and lower concentrations occur at the right times at each station. The
temporal correlation is not as strongly affected by the downscaling as the spatial correlation.
It slightly improves on average, from 0.60 in EMEP to 0.66 in uEMEP, although in a few cities
the temporal correlation gets worse after downscaling.

Finally, Figure 4.7f shows the station mean of temporal root-mean-square error (RMSE)
averaged over all stations, which should give an overall indication of how well the model is
able to represent the measurement time series at the stations. In most cities, the RMSE is
lower (and therefore better) in UEMEP compared to EMEP, and in many cases even a ~20 %
reduction. Averaged over the cities, the RMSE drops from 18.7 uyg/m3 in EMEP to 16.0 (15.7)
pMg/m3 in UEMEP at 250 m (50 m) resolution.

For air quality it is in particular the periods with highest concentrations that are important to
model correctly. Therefore, the validation is repeated after selecting only the 20 % of the time
period that has the highest NO, concentrations. This selection is done using the median of
observations from all stations in each city every hour and ranking the hours by this observed
median. Thus, the data selection is different for each city and may contain isolated hours from
different days. 75 % data coverage is checked after the selection of the period with 20 %
highest concentrations, which means the set of stations included for validation could be slightly
different from the validation of the full dataset.

Figure 4.8 shows the resulting validation for this data subset. The observed mean is much
higher in this subset, on average at 68.3 ug/m3 compared to 38.3 ug/m3 for the full period.
The average bias is -28.0 yg/m3 in EMEP and -11.5 (-10.2) uyg/m3 in uEMEP at 250 m (50 m)
resolution (Figure 4.8b), which is a similar relative reduction in the bias as for the full dataset
(Figure 4.7b). Spatial correlation (Figure 4.8d) is similar for this data subset as it was for the
full dataset, with important improvements from downscaling. Temporal correlation (Figure
4 .8e) is much worse for the subset of highest concentrations compared to the full subset (both
in EMEP and uEMEP), dropping from around 0.6 to 0.3 on average. This is probably because
the variability is less dominated by the diurnal cycle of traffic emissions when only the 20 %
hours with highest concentration are considered, and we can expect the diurnal cycle to be
better captured in the model than the variability between peak concentrations at different days.
We still see that the downscaling improves the temporal correlation on average, though again
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there are several cities where it does not. But while for the full dataset, downscaling only
weakly impacted temporal correlation (Figure 4.7¢), the downscaling has a much stronger
effect on the temporal correlation for the 20 % hours of worst concentration (Figure 4.8e). This
indicates that the downscaling correctly captures an aspect of the time variability in the highest
concentrations in some cities, while in others it does not. Given the strong relationship found
in section 4.4 between stability and the increase from downscaling, we suspect that the reason
for the differences in temporal correlation between cities could be related to whether
meteorological conditions and in particular the stability are correctly represented.

Finally, the temporal RMSE is decreased in most cities also in the 20 % highest concentration
subset, on average from 32.4 ug/m3 in EMEP to 25.1 (24.6) ug/m3 in uEMEP at 250 m (50
m) resolution (Figure 4.8e).

In conclusion, the downscaling of NO; importantly improves the bias and spatial correlation in
most of the 30 cities considered for validation, both for the full dataset and for the 20 % of
hours with highest concentration. Temporal correlation also improves on average, but the
improvement is not as large and there are also some cities where it gets worse. Using 50 m
resolution for downscaling road traffic instead of 250 m further improves both bias and spatial
correlation, while it has very little effect on the temporal correlation.

452 PM2s

Figure 4.9 (left panels) shows the validation for PM2 5 against EEA stations for the full period.
Only 12 cities have a sufficient number of observations. The city-mean bias is improved from
-2.7 t0-0.9 (-0.6) pg/m3 for uEMEP with 250 m (50 m) resolution (b), but the spatial correlation
is not systematically improved across the cities (d). On average, it improves from 0.05 in
EMEP to 0.16 (0.19) in uEMEP using 250 m (50 m) resolution, but there are several cities
where the spatial correlation gets worse after downscaling. The spatial correlation also is quite
low even after downscaling and even negative in multiple cities. However, in contrast to NO»,
the observed spatial spread in the cities is only 6.1 uyg/m3 on average (c), which is relatively
small compared to the average concentration (18.0 ug/m3).

As for NO,, the validation of PM25 is repeated for the 20 % of the hours with the highest
observed median PM2s concentration in each city (Figure 4.9, right panels). For this subset,
the average bias is -8.3 ug/m3 before downscaling and improves to -5.7 (-5.3) pg/m3 with
downscaling to 250 m (50 m), while spatial correlation goes from 0.06 to 0.19 (0.20), but again
with many cities where spatial correlation gets worse. The temporal correlation and RMSE are
both getting worse with downscaling in both the full dataset and the 20 % highest concentration
subperiod (Figure 4.9e-f).

Since residential heating is the most important downscaled contribution for PM, 5, these results
indicate that the population density is not a very good proxy for distributing these emissions in
many of the cities. Better results might be obtained if more appropriate proxies for these
emissions are found. Using annual uEMEP calculations for all of Europe, Mu et al. (2022)
tested altering the proxy for residential heating in uEMEP by using a nonlinear relationship
between population density and emissions or combining it with data on building density, but
neither significantly improved the spatial correlation. They did, however, show that proxy data
more closely linked to combustion, as available for Norway, can give significant improvements.

In addition, the performance is also limited by the original gridding of emissions. Since this
study uses EMEP emissions, the emissions are mainly as reported by the countries
themselves, although specifically for PM emissions from sector C (residential combustion) the
emissions instead come from estimates by TNO for some countries, in the cases where the
reported emissions are considered to not take into account the condensables. This is
documented in the EMEP status report 1/2023, chapter 3.3. The gridding of the emissions
from TNO are typically also based on proxies such as population density or wood availability,
and may not account for factors such as regulation on combustion in cities. For example, PMF
data in Barcelona show that contribution from biomass burning is overestimated by the models
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there (Deliverable D6.3 of CAMEQ). Note, however, that for our study here the Spanish
emissions for GNFR C for PM2s are reported by Spain and not taken from TNO.
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Figure 4.7: Validation of NO, concentration for period 8.1.2019 — 28.2.2019, for original EMEP
concentrations and downscaled with uEMEP at 250 m and 50 m resolution. NO: is validated
against EEA stations for cities with at least 5 total stations, 1 traffic station and 1 background
station with >75 % data coverage: (a) The number of stations, (b) the mean concentration over
the period averaged over the stations, (c) difference in mean concentration between highest
and lowest station, (d) the spatial correlation (among stations in a city) of time-mean
concentration, (e) the temporal correlation calculated at each station and then averaged over
the stations, and (f) the temporal root-mean-square error calculated at each station and then
averaged over the stations. To the far right is shown the mean over the shown cities.
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Figure 4.8: Same as Figure 4.7, but only for the 20 % of the hours in the 52-day period that

have the highest NO, concentration (from median of the station observations).
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Figure 4.9: Same as Figures 4.7-4.8, but for PM. 5, showing the full dataset to the left and the
20 % of hours with highest PM2s concentration to the right.

4.6 Model evaluation against low-cost PM2.5 sensors

The number of EEA stations available for PMzs is relatively limited. As an additional way of
evaluating the PM2 5 variability within the cities, we used a recently published dataset of low-
cost sensors (LCS) for PM2s (Hassani et al., 2025). This dataset contains several thousand
sensors from all over Europe, though mostly in Germany and surrounding countries. We have
only used data with the highest level of quality flags, which means a relatively small fraction
of the sensors have 75 % data coverage for the 52-day period. Only these stations have been
considered. Just as for the validation against EEA stations, we also consider the hours with
20 % highest concentrations (from median of LCS available at each hour) in each city as a
subset. This results in 15 cities with at least 10 sensors with 75 % data coverage for the whole
dataset, and 13 cities for the subset of 20 % highest concentrations. For these cities, the
gridded uEMEP concentrations at 250 m have been interpolated to the sensor locations and
compared to the LCS data. Results are shown in Figure 4.10.
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Similar to what we found in the EEA station validation, PMz svalidated against the LCS data is
not systematically improved by the downscaling. Spatial correlation does not systematically
improve with downscaling, and the temporal correlation and RMSE both get worse on average.
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Figure 4.10: Validation of PM25s concentration against Low-Cost sensors with 75 % data
coverage in period 8. Jan — 28. Feb 2019 (left), and for the 20 % of this period with the highest
observed PM. s concentration in each city (from median of LCS observations) (right). Showing
only cities with at least 10 stations with sufficient data coverage. Blue bars show original
concentrations from the EMEP model, red bars after downscaling to 250 m resolution.

4.7 Downscaling effect on population exposure

Having established that NO2 concentrations are improved from the downscaling, we will
quantify how much the downscaling increases the calculated levels of population exposure.
This was already shown in Figure 4.3, but only for a time-average of population-weighted
mean. Figure 4.11a-b shows histograms of the occurrence of daily mean NO. concentrations,
for the population-weighted mean and for the 95-% percentile, respectively, in all cities before
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and after downscaling. There is a shift towards higher values both for the population-weighted
mean and the 95%-percentile, and the distributions get wider. The limit value for daily mean
NO- concentration defined in the new European Ambient Air Quality Directive is at 50 ug/m3,
and this limit is exceeded much more frequently after downscaling, both for the population-
weighted mean (238 % more days) and for the 95-% percentile (219 % more days). There are
also much fewer days with concentrations below 10 ug/m3 or even 20 ug/ma3.

For completeness, we also show the same histograms for PMz s in Figure 10c-d. Also PMasis
shifted towards higher concentrations, though not as much as NO». The number of days above
the new limit value for daily mean PMa s of 25 ug/m3 increases by (only) 31 % for the city mean
and by 52 % for the 95-% percentile. However, the very high values of daily mean PM2 s above
50 pg/m3 (and even 100 pg/m3) occur much more frequently, particularly in the 95%-
percentile. Since the downscaling of PM2s does not systematically improve performance, this
increase in occurrence of very high concentrations might not be so reliable.

(a) NO2 population-mean daily (c) PM2.5 population-mean daily
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Figure 4.11: Distribution of daily mean concentrations during the 52-day period, comparing
before (EMEP) and after downscaling to 250 m (UEMEP), plotted as the number of days that
fall within each 5 pyg/m3 bin, summed over all cities: (a) Population-weighted mean NOx
concentration (b) 95%-percentile of population exposure to NOx. (¢) and (d) show the same
for PM2s. NB: There are 2 days in (b) and 8 days in (d) that exceed the 150 ug/m3 cut-off.

4.8 Recommendations for the CAMS Policy support service

We found that downscaling with uEMEP to 250 m can give important additional information
on exposure to the local NO2 from road traffic, both by correcting the average population
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exposure and by accounting for the variability within the core city that gives rise to higher
exposure for a subset of the population, here quantified as the 95%-percentile. For PM2s, the
current proxy used for residential heating is not sufficiently accurate that downscaling PMz s
gives significant improvement, and/or the gridding of primary PM in the original 0.1x0.1 degree
emission data set is not of high enough quality.

The relative increase from downscaling in traffic contribution was shown to be very variable in
time, due to changing meteorological conditions, so a constant factor does not seem
appropriate. One option is to run the uEMEP model operationally for the 79 cities and use its
outputs to calculate the population-weighted mean and 95-% percentile of exposure for each
hour, as done in this study. The computational cost of uUEMEP increases strongly with
resolution, but at 250 m resolution it is manageable to run downscaling of all the cities for the
4-day forecast horizon within the CAMS2_71 Service as it is set up at present. This would
need to be done after the Baseline EMEP calculation has completed, whose output must
include the local fractions. Based on the computation times of the runs of this study, all cities
can then be run within 1 hour on a computational node with 96 parallel CPUs, each with 2 GB
memory. If a coarser resolution of 500 m or 1 km was used instead, the computational cost
would be lower.

A possible visualization of the resolution effect could be based on Figure 4.4a, but removing
the 5-95% percentile range for EMEP.

Ideally, the modified population-weighted mean concentration due to downscaling should also
appear in the “City & Country impacts” page. It might seem natural that the increase in mean
concentration due to downscaling should be attributed in full to the city's contribution to itself.
However, it is actually not so straightforward, since the downscaling domain is not defined by
the city boundary, but instead a moving window of size 2x2 EMEP cells around every receptor
grid cell. 2x2 EMEP cells correspond approximately to a 30x30 km area. Depending on the
location of the receptor, a smaller or larger part of this area is outside the core city. Sources
outside the core city should not be attributed to the city. However, uEMEP has newly
implemented a feature where the contribution from inside vs. outside a polygon can be
separately quantified. This feature was not used in the runs done for this study, but it could be
used to separate the increase from downscaling into an increase from sources inside the core
city polygon vs. outside. The increase due to sources outside the core city could be attributed
to the “Rest of country” source. This still has two important limitations, since the downscaling
categorizes sources by GNFR sector and not by country: 1) If a neighboring country is close
enough to the city that emission sources from that country falls inside the downscaling domain,
any increase from such sources due to downscaling will be attributed to “Rest of country”
instead. 2) International shipping is shown as a separate source in the service; however,
UEMEP does not distinguish domestic and international shipping, so changes in contributions
from international shipping due to downscaling will instead be attributed to the city’s
contribution to itself or “Rest of country”, depending on the emission location.
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5 Propagation of emission uncertainties into the city SR service
and potential for operational implementation

5.1 Introduction

Providing uncertainty quantification (UQ) estimates alongside air quality forecasts is crucial to
maximizing their utility. Uncertainties arise from, among others, uncertainties in emissions,
meteorology, model uncertainties, resolution of the model and emissions, and city definitions.
Here we focus on the propagation of uncertainties in emissions and temporal profiles.

Commonly employed methods for propagating uncertainty through chemical transport models
(CTMs) include single parameter perturbations, ensemble methods and Monte Carlo
techniques (e.g., Sax and Isakov, 2003, Aleksankina et al., 2018), and emulator (also known
as “surrogate”) modeling approaches (e.g., Aleksankina et al., 2019, Guo et al., 2024).

Monte Carlo techniques are common tools for analyzing uncertainties arising from complex
models. In such an approach with a CTM, one could sample from the prescribed emissions
distributions, use these samples as input to run the model, and estimate the uncertainty of the
prediction by considering the prediction spread across the ensemble. Hence, each sample in
the input space yields a corresponding model run. The compute requirements of modern
CTMs yield this method computationally prohibitive in many applications, and in particular
unsuitable for operational air quality forecasts, such as those provided by CAMS.

Emulator models serve as another common alternative to either estimate or propagate
uncertainties through complex models. They can be employed either alongside Monte Carlo
techniques or as a substitute for them (e.g., Conibear et al., 2021). Used with Monte Carlo
techniques, the aim is that cheaper evaluation of the emulators allows efficient exploration of
the parameter space and that this yields a more complete understanding of the prediction
uncertainty. Using emulator models alone relies on using an emulator model which provides
a more complete understanding of the predictive distribution, and assuming this predictive
distribution is representative of the uncertainty in the original CTM.

The most mathematically complete description of prediction uncertainty available would be
the entire predictive distribution. In some cases, this is obtainable if one has a formula
describing a system and they wish to propagate uncertainty through this formula. CTMs are
highly complex, and therefore no single formula is available to describe the entire system. This
does not mean, however, that analytical methods to propagate emissions uncertainties are
not available. For example, previous work by Dunker et al. (2022) has combined analytical
methods with Monte Carlo techniques to estimate and analyze uncertainties in ozone
predictions arising from biogenic and anthropogenic emissions. Given a method to
differentiate the model, analytical approximations for uncertainty propagation may be used.

Utilizing analytical methods is preferable for a few reasons. For one, compared to emulator
model-based techniques, we avoid an additional modeling step because we do not need to
train another model. Furthermore, we do not need to make an additional assumption that our
emulator model correctly characterizes both the first-order and higher-order properties of the
predictive distribution. Analytical methods can be implemented efficiently because they
provide a formulaic representation of the uncertainty. Moreover, they are relatively explainable
and easy to understand, with complete information available regarding where sources of
uncertainty arise from, and how they interact. Finally, using analytical methods for uncertainty
propagation allow modelers the ability to make modeling choices, balancing accounting for
important sources of uncertainty and computational efficiency. Modelers have complete
control in this aspect, and therefore can gain a more complete understanding of how emissions
uncertainties result in forecast uncertainties.

The objective of this chapter is to explore an approach to propagate (yearly country, sector,
emitted component and temporal) emission uncertainties through the EMEP MSC-W
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(European Monitoring and Evaluation Programme Meteorological Synthesizing Centre-West)
model with direct applications to operational air quality forecasts provided by CAMS.

5.2 Emissions Uncertainties

Emissions uncertainties are provided by Work Package 5 in CAMEO, and described in the
deliverables Super and Kuenen [2023] and Super et al. [2024]. Uncertainties are provided as
yearly estimates in terms of absolute and relative standard deviations, per country, sector,
emitted component, and in the case of primary particulate matter (PPM), as a gridded data
product matching the model resolution of 0.1° x 0.1°. Following the recommendations of the
data providers we work exclusively with the relative standard deviations*. A general first
analysis can be made by cross-referencing the contribution and uncertainty data.

Table 5.1: The mean relative standard deviations of primary PM2.s emissions for GNFR sectors
across countries.

Sector Mean Relative
Standard Deviation
PublicPower 0.75
Industry 0.39
OtherStationaryComb 0.33
Fugitives 0.47
Solvents 0.56
RoadTransport 0.08
Shipping 0.35
Aviation 0.31
OffRoad 0.24
Waste 0.93
AgriLivestock 0.21
AgriOther 0.21

Emissions uncertainties at the sector level are inherently relevant insofar as each sector
contributes to anthropogenic air pollution. The following figure provides an illustration for how

4 The relative standard deviation, also known as the coefficient of variation, is a way to express the
standard deviation as a percentage of the mean. It provides a sense of the variability in the emissions
relative to the average.
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each sector proportionally contributes to the anthropogenic part of PM2s concentrations
across seasons in 2019 (calculated with the Local Fraction (LF) methodology). However, the
relative sector contribution to PM2.s concentrations varies widely from country to country®. We
additionally may aggregate across the entire year, considering maps of the relative
contribution from each emission sector to PM2 s concentrations to get a sense of how different
sectors proportionally contribute at different locations, shown in Figure 5.2. Seasonal versions
of these plots are available in Appendix B. Generally we find that the anthropogenic part of
PM.s in summer is less certain in a relative sense than winter. Part of the reason for this is
that industry and public power have higher average relative standard deviations and contribute
more in the summer. Another potentially contributing factor is that road transport contributes
relatively much more in the winter than in summer. Compared to other sectors, road transport
is very certain with a sector standard deviation of 0.08 (the lowest of all sectors). This has the
effect of exacerbating the difference between winter and summer to make winter appear
relatively more certain. Agricultural livestock also has a relatively low relative standard
deviation (0.21) and contributes much more in the winter, potentially exacerbating the
seasonal differences.

Mean fractional contribution

1.0 I PublicPower
Industry
- OtherstationaryComb
0.8 - - - . Fugitives
Solvents
. . - RoadTransport
. - I shipping
0.6 1 Aviation
I OffRoad
Waste
0.4 1 I AgriLivestock
AgriOther
0.2 1

0.0 -
JFD MAM JA SON

Figure 5.1: Mean fractional contribution to the anthropogenic part of the PM2s concentrations
across GNFR sectors during seasons in 2019 over the EMEP domain (both sea and land).

5 A table of countries from highest to lowest relative standard deviations is provided in the
appendix.
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Figure 5.2: The contribution fraction from each sector to anthropogenic PM» s concentrations
in 2019. Scale is from 10% - 40%.

25 - AgnOther - YYY

<3

5.3 An Analytical Method for Propagation of Emission and Temporal
Uncertainty

We combine the emission uncertainties provided by TNO in conjunction with sensibilities to
emission changes obtained using the Local Fraction method (LF) (Wind et al., 2020, 2025).
Using these as inputs, we propagate the uncertainty forward using a probabilistic approach
based on a local expansion of the EMEP model as a first-order Taylor series. The key insight
to this method is that the local fractions output can be seen as the constituent terms in the
Taylor expansion of the pollutant concentrations expressed as functions of emissions. In
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conjunction with the emissions uncertainties, we derived uncertainties in the EMEP output
using the variance formula (Cramér, 1999, Ku et al., 1966).

Let Lrepresent the set of countries, § the set of GNFR sectors, and & the set of emitted
components. Specifically, the set of emitted components considered is:

& ={PPM,S0,,VOC,NOy, NH3}

For each combination of country, sector, and emitted component (i.e., forallc € £ X § X &,
denoted as C), we have estimates for both the emission mean (E.) and the relative standard
deviation (o), where: o./®' = 0./ E..°

Let C represent the pollutant concentration. We write the LF output in the following way for
ease of notation:

The Local Fractions relate the amplitude of small variations of emissions to the resulting
variations of pollutant concentrations. We define the total air pollution accounted for as the
sum of the contributions over all ¢ € €:

oC
Piop =) LFe=) - Fe

ceC cel

We can express the uncertainty in Pyt by accounting for the uncertainties attributed to each of
the contributions.

Var(P,,;) = Var (Z LFC)

ceC
Using the properties of variance, this can be expanded in the following manner.

Var (Z LFC) = Var(LF.)+» ) Cov(LF.,LFc).
ceC ceC

ceC el
c'#c

Let us consider the terms on the right-hand side of this equation. The first term can be written
as

> Var(LFe) =) _ o2
ceC ecC

where

o. =~ LF_ -Uim

Mathematical formalism for what the LF output represents can be found in (Wind and van
Caspel, 2025, Equations 3, 4). This final approximation is known entirely as it is the product
of the LF output and the relative standard deviation for ¢ € C.

% Note that while we do have absolute standard deviations provided by TNO, they refer to a specific
emissions data set, and therefore are not directly transferable to other emissions data sets. We
therefore assume that, while the absolute emissions and standard deviations can change between the
provided data and the emissions data used in our EMEP model runs, the relative standard deviations
do not change, and so we directly work with just the relative standard deviations.
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Inspecting the second term in the sum on the right-hand side of the variance formula, we can
momentarily consider the covariance. We can decompose the formula for the covariance

Cov(LF¢,LF¢) = 0cocrp(LF ¢, LF 1),

where p(-,+) is the correlation. The correlations are approximated using the formulation above.
For the correlation term, we have some options for simplifying assumptions.

1. Uncorrelated case: Assume p(LF., LF)=0forall c,c’ € C.
2. Fully correlated case: Assume p(LF., LF¢)=1forall¢c,c’ € C.
3. Sector correlated case:

[J(LFE. LF:: ) — {1 C.C(:éh?l..l'l.‘ the same sector
0 otherwise

Each of these correlation cases relates to specific assumptions about emission correlations.
In the first case, assuming zero correlation implies that no emission uncertainty is informative
in predicting any other emissions uncertainties. For example, the uncertainty in emissions
produced by residential heating in Norway would tell us nothing about the uncertainty in
emissions from the same source in Sweden, despite the fact that these countries are closely
geographically related and likely experience similar meteorological conditions driving these
emissions. In the second case, we consider the exact opposite scenario, which is also very
unrealistic. In such a situation, the random variable describing emissions uncertainty from
Fugitives in Montenegro would be 100% correlated, with the random variable describing
emissions uncertainty from residential heating in Sweden. Likewise for all other combinations
of uncertainty in emissions in all countries, sectors, and emitted components. This gives a
maximalist approximation on the variance. Finally, in case three, we consider emissions fully
correlated within sectors, but not across sectors. For example, uncertainty in NOx emissions
from the transportation sector in the Netherlands would be perfectly correlated with uncertainty
in NOx emissions in Hungary, but uncertainty in emissions from NOy in the Dutch transportation
sector would be uncorrelated emissions from all other sectors in the Netherlands. In this
sense, while we perhaps overestimate the correlation within sectors, we aim that this
approximation can compensate for some of the missing correlations within countries.

There are some computational considerations pertaining to these cases, which make them
attractive approximations to consider. In case 1, the variances simply add. This places the
most conservative estimate on the prediction variance we consider and can be interpreted as
a lower bound. In case 2, this assumption actually allows us to simply add the standard
deviations’. Case three, where we consider all sectors fully correlated with themselves and
assume emissions uncertainties between sectors are uncorrelated, represents one
compromise between these two extremes. In the sector-correlated case, it suffices to add the
squares of the sums of the standard deviation within each sector, which also yields
computational benefits.

One important consideration is how assumptions about correlations affect our results. In the
uncorrelated case, a well-known statistical principle? justifies the use of a normal (Gaussian)
error distribution. However, this justification may break down when inputs to the model exhibit
correlation. When sectors are independent of each other, it's standard to assume that model
errors also follow a normal distribution. However, if sectors are correlated, this assumption
might not hold as well. We do not assume strong correlations between sectors, so it's still
reasonable to use the normal distribution as an approximation even when combining data from
thirteen sectors. We keep this assumption throughout the analysis because it keeps the
methods consistent and enables closed-form analytical solutions. This approach also allows

7 This is justified because a2 +2ab + b? = (a + b)?, which implies that the standard deviation
can be written simply in terms of a + b.
8 The Central Limit Theorem justifies the use of a Gaussian error distribution.
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us to calculate prediction intervals, which help us compare how well the model performs under
different correlation assumptions.

More realistic correlation structures were also considered. Based on the experience creating
the uncertainty data product in CAMEO Work Package 5, TNO provided a first approximation
of how the uncertainties might be correlated. Table 5.2 presents these suggestions.
Implementation of such a correlation structure is significantly more complicated, however,
from both purely a technical and computational perspective. One of the key features of the
aforementioned correlation structures is their computational benefit, which makes them not
only computationally feasible but potentially also suitable for production services. As we
consider larger and more complex correlation structures, their implementation can quickly
become computationally prohibitive. For this reason, we do not implement this suggested
correlation structure, however this could be attempted in the future.

Table 5.2 Proposed correlation structure by TNO for emissions uncertainties (how much errors
in e.g. GNFR A in one country is correlated with errors in GNFR A in another country).
Percentages represent the share of each sector to total emissions.

Expected
corr. in

error
oneR | GNFR Name [\[0).¢ ranges Explanation

A Power plants 2% 14% 1% 29% 0% 0 Point sources, reporting by facility in many countries

Point sources, reporting by facility in many countries - but
also more diffuse industrial sources, which could be using
B Industry 13% 20% 9% 42% 1% 0.25 similar (Guidebook) methods across countries

Mix between countries using their own methodology vs.
countries using the EMEP/EEA Guidebook; take an
C Residential 64% 12% 15% 19% 1% 0.5 average

Small sector, different subsectors and methods for
D Fugitives 1% 0% 6% 9% 0% 0.25 estimating emissions, likely low correlations

Very uncertain category, many countries use default
Solvents/product methods. Also countries may incorporate (parts of)
E use 2% 0% 38% 0% 2% 0.75 methods from other countries for themselves

Many countries use COPERT (~75% of EU countries),
some use other methods (e.g., HBEFA), but these are also
compared sometimes. So likely correlations do exist to a

[ Road transport 9% 42% 7% 0% 1% 0.75 large extent, but not fully.

This concerns only inland shipping where correlations are
G Shipping (inland) 0% 1% 0% 0% 0% 0 probably quite low since countries have their own methods.

Expect full correlations since most approaches rely on the
ICAQ data and Eurocontrol approach. So all using the
H Aviation 0% 1% 0% 0% 0% 1 same type of data in general.

Methods differ quite a lot between countries, also many
| Other mobile 2% 9% 2% 0% 0% 0.25 subsectors included here with all their own characteristics.

Also different subsectors. Not very important for AQ, so

J Waste 4% 0% 1% 0% 2% 0.5 probably not that relevant anyhow.
Assume largely using the Guidebook (most countries) with

Agriculture exception of some countries with important agriculture

K livestock 2% 0% 18% 0% | 42% 0.75 sector (e.g. NL, DE, FR)

Methods differ quite a lot between countries, also many
L Agriculture other 1% 0% 3% 0% 51% 0.25 subsectors included here with all their own characteristics.

Generally one method is used across all sea regions, so full
G Shipping (sea) 1 correlation
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5.4 Total Uncertainty Arising from Anthropogenic Emissions Uncertainty
assuming Sector Correlation
It will be useful to write explicitly the total uncertainty arising from anthropogenic emissions

assuming the sector correlated case. This correlation structure offers some realism while also
facilitating computation benefits, which we explicitly write below.

Fix time t. Let Puw(- , t) represent the spatial field of total accounted for air pollution at time t.
Then we have:

Piot(,t) =Y LF(-t,s)

SES

Assuming that s is uncorrelated with s’, for all s,s" € §,

Var (Piot(+,t)) = » _ Var (LF(-,t,5))

SES

LF(-,t,s) =Y _LF(-t,s,()

el

Assuming full correlation within sector s across countries:

2
Var (LF(-,t,s)) = Var (Z BB 1.s, {)) - (Z o(-,t, m)) :

el el

Assuming full correlation within sector s across emitted components:

o(si.al) = Z o(-,t,s,4,e)

ecf

o(-,t,8,0,e) ~ ofl(s,L,e)LF(-,t,5,L,€)

5.5 Maps Exploring Correlation Structures

We now explore these various correlation structures as both yearly averages and across
seasons to determine how their associated assumptions yield various relative uncertainty
maps. Doing so allows modelers to gauge approximate ranges and their plausibility. We now
present maps of the relative standard deviations induced by the three considered correlation
structures.

Generally speaking, the uncorrelated case yields uncertainty maps which are considered too
small. This has the implication that a prediction interval data product derived from a predictive
distribution assuming no correlation between the inputs would underestimate the actual
uncertainty and not adequately capture the spread in observations. Considering the other
extreme, assuming full correlation between all inputs yields uncertainty maps which are
generally too high. This would result in prediction intervals which are too large, and not provide
meaningful uncertainties alongside air quality forecasts. Assuming purely sector correlation
balances these extremes, in a manner which yields more realistic uncertainty maps, which are
more consistent with the spread in observations and domain expertise.
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Figure 5.3: Maps of the yearly relative standard deviation of PM2sin 2019 from anthropogenic
emissions across different assumed correlation structures. The scale ranges from 10% - 40%.

5.6 Formulas for Estimating Local Contribution Uncertainty Using Gridded
Uncertainty Data

In CAMS, it is often useful to consider the local contribution to air pollution concentrations, for
example of PM2 s (defined here as the contribution from a city to itself). It is therefore important
to also consider the uncertainty in the local contribution to the concentrations. To motivate with
an example, we will consider a specific air pollution episode beginning 16th of February 2019
in Bratislava. We will explore this example in more detail later in this chapter, however for now
we simply use it as a concrete example to illustrate how we can account for uncertainty arising
from local emissions.

Let Cppya5 represent the surface concentration of PM.s. Furthermore, let D represent the
domain. In this example we have that |D| = 400 x 260. For fixed x€ D and time ¢, let
Cpum2.5(X, t) be the surface concentration of PM. s at the given spatio-temporal coordinates. We
may hold out one of these coordinates as generic, in which case a - will represent that this is
to be taken over all values of the held out coordinate. For example, Cpp25(t) € RIPlis the
spatial field at time t, whereas Cpy, 5(X,-) represents the time series of concentrations of PMa2 s
at location x.

Let B denote a set of cities. Fix b = Bratislava € B.Letm, € R P! denote the city core mask
for Bratislava (see definition of city in Chapter 3.1). Each entry of this array is the fraction of
each grid cell which is defined as belonging to Bratislava by the core-city mask definition. For
a given point in time t, the background concentration in Bratislava is given by

CPI\IQ.S(b? t) = V(‘,('.(mb)T vec (CPI\IZ.S(" f))
We would like to express the uncertainty (i.e., the variance) of this quantity, o;, %(t). However,
we do not have uncertainties for all contributing sources. Rather, we write the concentration
in the following way

where the closure term e(+, t) is what remains between all anthropogenic sources accounted
for as defined above and the total concentration. It therefore accounts for natural sources and
nonlinear chemistry. We lack uncertainties for this, and therefore we only consider the
uncertainty in Piot.
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Piot(b,t) = ZLFbt s
seS

where LF(b, t,s) is the contribution from sector s to the concentration of PM2 5. Specifically
LF(b,t,s) = vec (m‘g,)T vec (LF(-,t,s))

Alternatively we could write

Pioi(b,t, s) Zm,, x)LF (x, s, Slovakia)

xEb

LF(x, s, Slovakia) = Z LF (x, s, Slovakia, €)
ecf

Assuming full correlation within sector s across emitted components, we can compute their
variance as the sum

9

Var (Z LF(x, s, Slovakia, 9)) = (Z o(x,t, s, Slovakia, (e)) .

eef ecf

where each of o(x, t, s, Slovakia, e) is specific to the emitted component. We make this choice
because we have a gridded data product specifically available for primary PM (PPM), but not
other emitted components, and it is desirable to take full advantage of this gridded data
product, particularly when considering the uncertainty arising from local emissions.

The Local Fractions methodology also provides us a way to determine for each grid cell x, the
neighboring cells (within a window), the amount of air pollution which comes from that
neighboring cell. The collection of all neighboring cells, we will call a “Local Fractions Window”,
and denote as LFW (x). It is important to note, however, that not all air pollution which reaches
location x comes from LFW (x), rather only a fraction. The fraction of air pollution at location x
which comes from the k™ neighbouring cell is denoted as [f, (X).

For all emitted components except for primary PM, we calculate o(x, t, s, Slovakia, e) the same
way as before, by multiplying the Local Fractions output for that country, sector, emitted
component and multiplying by its associated relative standard deviation. In the case of PPM,
however, we wish to use the gridded uncertainty data product for all neighboring cells in
LFW (x) for the proportion of air pollution which reaches x from LFW (x), and balance that with
the standard definition for all other emitted components for the remaining proportion. For
simplicity, we assume these two sources are uncorrelated, and add their variances. The
complete definition for o (x, t, s, Slovakia, e) can therefore be given as

=

2
o(x,t, s, Slovakia, e) = [niFW( (1= 22 i () (USI“‘ a6, PPMLF(X)) } , ife=PPM

OB kiias.c LE LX) otherwise
|LFW (x)|
otrw(x)= Y (LFW(x)iof) +)ZC()\ LFW (x);, LFW (x);).
i=1 i,J
Jj>1
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ey
Cov(LFW (x);, LFW (x);) = 0,0, exp (L’('l)>
Slovakia

Oi = n.f‘.)fglln\'ukiu.l’l’.\l(i)LjJIV(x)I"

Note that to use the gridded PPM data product in each Local Fraction Window, we need to
account for the spatial correlation between the cells. This correlation is accounted for by the
spatial covariance function, which is specified to be an exponential. The range parameter
(here Lgiovakia) iS provided for each country, so that the aggregated gridded uncertainties for
PPM match the country sector level uncertainties provided in Super and Kuenen [2023]. The
procedure by which this is accomplished is described in Super et al. [2024]. The distance
metric used in the great-circle distance, although on such small scales such as in our
application, this is essentially the same as the Euclidean distance.

5.7 Uncertainties in Emission Temporal Profiles

Emissions are reported by countries per sector at an annual frequency. As a part of their work
for CAMS, TNO and BSC distribute these emissions throughout time and space for each
country, such that the accumulated emissions are equal to the annual reported values.
Typically this involves the use of “time factors” in the CTMs, which represent the fraction of
the emissions that should be assigned to each category. Commonly employed time factors
are monthly, day-of-week, and hour-of-day time factors. Interpolation and reweighting and
procedures are then applied to remove large discontinuities in the time factor series, and to
ensure consistency.

We would additionally like to account for the uncertainty which arises from how the emissions
are distributed throughout time. Uncertainties in temporal profiles have been produced and
are described in Guevara et al. (2024). According to the documentation, these temporal
profiles are pertinent for characterizing the uncertainty associated with how modelers may
implement them within their modeling frameworks.

We account for this source of uncertainty in the following manner. Consider the time factor for
a given point in time at an hourly resolution, for a given pollutant, country, and sector. Ignoring
an additional interpolation step, the time factors used are as follows:

Z fu= 12,2 fw = 7,2 fy = 24.

The data accompanying deliverable 5.1 described in Guevara et al. [2024] provides estimates
of the means and standard deviations for each of these summands. Let fyfufu = ft-
Assuming independence of the time factors and applying properties of expectation and
variance, we have that Ef; = EfyEf,/Efy , and

Var(fe) = (Var(fu) + (Efi)*)Var(fw) + (Efw))Var(fu) + (Efn)*) — (EfuEfwEfu)*,

Hence, for each country, sector, and emitted component, at every time step t, we have an
estimate for the variance of the associated time factor. Note that while the formula we derive
is exact based on the independence assumption of the time factors, the data we use are
variance estimates, and so the resulting variance is itself an estimate.

We then use this variance and the mean estimate to derive a relative standard deviation for
each country, sector, and emitted component. By multiplying this with the LF output, we have
an estimate of the standard deviation which arises from the temporal profile. The LF
methodology does not have native way to introduce this source of temporal uncertainty, so
rather we consider it an additional source of uncertainty which is uncorrelated from emissions
uncertainty, and simply add it on to our uncertainty estimate. However, we can not assume
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that the temporal uncertainty at time t manifest instantaneously into the concentration
uncertainty at time t. Rather, some form of aggregation method is needed, the various
methods of which are explored in subsequent sections.

We summarize the inclusion of the temporal uncertainty with the following procedure:

1. Use the country, sector, emitted component temporal uncertainties from Guevara et
al. [2024].

2. For every time step, compute the time fraction (mean) and its standard deviation
assuming independence.

3. Compute a relative standard deviation, and then multiply this relative standard
deviation by the associated Local Fractions output for that country, sector, emitted
component.

a. We can think of this as the instantaneous uncertainty in units of the data arising
from the temporal profile.

4. Aggregate all of these uncertainties, assuming that the temporal profiles are 100%
correlated across sectors

a. This correlation structure need not be the same as the emissions

5. Consider an aggregated uncertainty for that day (e.g., the max of the previous 24 hour
period, or a 24 hour rolling window).

6. Add on this temporal variance to the emission variance.

5.8 Analysis of air pollution episodes

It is desirable to assess the effectiveness of the method for propagating uncertainties in
emission amount and temporal profiles under a selection of pollution episodes caused by
different emission sources. To do so, we choose the following air pollution episodes during
2019 in European cities to gauge the method’s performance. For example, when an episode
is primarily driven by emissions in a country or sector which is fairly uncertain, we anticipate
that the resulting uncertainty will be larger and perhaps capture the spread of most of the
observations (and conversely if the episode is primarily driven by emissions in a fairly certain
country or sector). The chosen episodes may also be analyzed using the currently available
tools on the CAMS policy service website: https://policy.atmosphere.copernicus.eu/yearly/

Table 5.3: Air pollution episodes used to investigate the propagation of emissions uncertainty
method.

City Time Type of episode

Bratislava 2019.02.12 - 2019.02.18 PMs arising from emissions in residential
heating and industry

Frankfurt 2019.02.12 - 2019.02.19 PM2s arising from emissions in residential
heating and industry

Amsterdam 2019.03.16 - 2019.03.25 |[PM2s arising from emissions in the
transportation and agricultural sectors.

Warsaw 2019.10.19 - 2019.10.24 PM.s arising from industry, traffic and
agriculture

For each of the following episodes, we provide figures of the concentrations broken down by
the Local Fractions output into the sector, country, and emitted component. Doing so allows
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analysis of how each of the various sources contributes while integrating out the other
dimensions (e.g., analyzing how the sectors contribute to the PM.s concentrations, while
aggregating over the emitted components in all of the contributing countries).

We additionally provide a prediction interval data product derived using our method compared
with observations. In these figures, we show the pollutant concentrations with the prediction
intervals derived from our method to propagate the emissions and temporal uncertainties and
an assumed Gaussian distribution of the errors®. The 95% prediction intervals are also
decomposed into the portion arising from local emissions, all emissions, and the temporal
uncertainty. In all of the following figures, a rolling 24 mean of the temporal uncertainty is used,
however this is subject to further exploration in Section 5.8.5. Observations are also
incorporated into the analysis, categorized by station type (i.e., suburban or urban) to enable
the calculation of empirical coverage. While data from both urban and suburban stations are
included, it is important to note that the regional model is not expected to resolve the sub-grid
variability required to accurately capture urban station measurements (see Section 3). These
urban observations are included primarily to support the analysis, with the understanding that
perfect agreement with the model is not expected. The empirical coverage is simply the
percentage of observations which falls within the prediction interval. We are interested in this
as a measure to ascertain, insofar as possible, the effectiveness of the method. In theory, if
the model is unbiased and all sources of uncertainty have been properly accounted for, the
empirical coverage should converge to the nominal (theoretical) coverage at the specified
confidence level as the number of observations increases. However, in this method we only
account for two sources of uncertainty: uncertainty in the amount of emissions and the
temporal profile. So we should not expect that these quantities agree. However, a comparison
with observations can still provide insight to the spread of the observations in relation to the
prediction intervals, as well as inform us if the constructed prediction intervals are too large.

5.8.1 Bratislava 2019.02.12 - 2019.02.18

The build-up of the PM2 s episode in Bratislava is generally captured well by the model, which
makes it a good candidate episode to analyze as a reference. This air pollution episode is
primarily driven by primary particulate matter arising from combustion in the residential heating
sector, with Slovakia contributing the most starting from the afternoon of 16th February. This
is well reflected by the increased contribution from local emissions to the prediction interval.
In this case, the prediction interval often spans many of the observations when the model bias
is low. The empirical coverage is 80.56%, which is relatively high because of the generally low
bias of the model and relatively high uncertainty in the residential heating sector which
dominates the contributions to the episode. The spread of the prediction interval generally
corresponds well with the spread in observations, even when the model exhibits some bias.

9 A Gaussian error distribution is a common and often reasonable assumption, particularly in models
where the total error arises from the aggregation of numerous independent random sources, consistent
with the Central Limit Theorem. This assumption provides analytical convenience and aligns with many
real-world modeling contexts. However, if the model inputs exhibit significant correlations or if the error
sources are not independent or identically distributed, the Gaussian assumption may no longer hold,
potentially leading to biased or mischaracterized prediction interval estimates. This can manifest, for
example, in prediction intervals which contain negative values. In principle, this should not occur if the
variance is correct, so we maintain this assumed prediction distribution for now, with the caveat that
once all sources of uncertainty are accounted for, further investigations should prioritize rectifying this
matter.

D6.2 54



CAMEO

Bratislava - Sector Contributions

N
=]
t

60 === Concentration
Sector sum
50 PublicPower
. Industry
- OtherStationaryComb
E - Fugitives
2 mam Solvents
=30 = RoadTransport
{ Shipping
o 20 . Aviation
OffRoad
10 . Waste
AgriLivestock
0 . AgriOther
2019-02-12 2019-02-13 2019-02-14 2019-02-15 2019-02-16 2019-02-17 2019-02-18 2019-02-19
Time
Bratislava - Country Contributions
T
60 1 = Concentration
501 ]
|
]
£ 40 -
= -
2301
- -
s -
& 07 .
|
-

=
o
t

2019-02-12 2019-02-13 2019-02-14 2019-02-15 2019-02-16 2019-02-17 2019-02-18 2019-02-19
Time

Bratislava - Component Contributions

‘
60 | = Concentration /™\ ‘
~ =+ Component sum
5o | WPV, Van
NO,
™ a0l SO« N\ /
‘E-, NMVOC [ /
2 30 { = NH, ~\
m.
o 20
10
o
2019-02-12 2019-02-13 2019-02-14 2019-02-15 2019-02-16 2019-02-17 2019-02-18 2019-02-19
Time
Bratislava - Empirical Coverage = 80.56%
‘
100 1 —— concentration

— Local Contribution

80 1 —— Sum of Contributions

Local Emissions 95% Pred. Int.
All Emissions 95% Pred. Int.

Tg 601 Temporal + Emissions 95% Pred. Int.
2 suburban
T‘q 401 . urban
o
=
a

20

o o4
0
2019-02-12 2019-02-13 2019-02-14 2019-02-15 2019-02-16 2019-02-17 2019-02-18 2019-02-19

Time

Figure 5.4: Bratislava air pollution episode partitioned info contributions by sector, country,
and emitted component alongside the empirical coverage induced by the estimated prediction
intervals.
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5.8.2 Frankfurt 2019.02.12 - 2019.02.19

The next air pollution episode, in Frankfurt, is also primarily driven by primary particulate
matter from residential heating combustion. However, significant contributions also come from
aerosol precursor emissions related to agriculture, traffic, and industry. This provides valuable
insight into how uncertainties across multiple sectors combine to influence the final data
product. Initially, the pollution is dominated by emissions from Germany, but as the episode
progresses, contributions from France and Switzerland become more prominent. The
relatively even distribution of emissions across sectors suggests that national origin, rather
than sector, plays a more defining role. While local emissions generally remain relatively stable
throughout the event, showing typical diurnal variability, they are slightly smaller on the
afternoon of the 16th when the pollution from Switzerland and Austria arrives. The empirical
coverage is 79.48%, which is relatively high, but suffers because of the high bias of the model
early in the episode, despite this time the spread of the observations matches the prediction
interval.
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Figure 5.5: Frankfurt air pollution episode broken down by sector, country, and emitted
components alongside the empirical coverage induced by the estimated prediction intervals.

D6.2 56



CAMEO

5.8.3 Amsterdam 2019.03.16 - 2019.03.25

This episode in Amsterdam is primarily driven by gaseous aerosol precursors (NOy, NH3 and
NMVOC), offering a valuable perspective on the method’s performance in cases where the
dominant influences are not from primary emissions. It is marked by a transition from natural
to anthropogenic emissions and then back again (based CAMS Policy Service data). The time
series begins with clean marine air carrying sea salt into the city. During the periods when
natural sources are dominating, the prediction interval shrinks, as we do not account for
uncertainties from natural emissions. Emissions arriving from the United Kingdom begin to
dominate on the 19th, resulting in a wider prediction interval. As wind directions shift to the
South and Southeast, air masses laden with high levels of anthropogenic pollutants, mainly
ammonium nitrate and sulfate from Germany and Belgium, sweep into Amsterdam, triggering
a significant pollution episode. Eventually, the winds shift once more, dispersing the pollution
and restoring cleaner, more natural air conditions.

Contrasted with the previous two episodes, residential heating plays relatively little role in this
episode. The peak PM.s concentrations are mostly due to industrial emissions, followed by
traffic, agriculture and solvents. While industry in general has a relatively high relative
uncertainty, traffic and the agricultural sectors are relatively more certain. The consistent
inclusion of natural sources in this episode results in prediction intervals which are small,
achieving only a 43.06% empirical coverage. Some of this is due to model bias, for example
on the 19th and 20th, when emission from the United Kingdom dominates. Although the bias
is low during the beginning and end of the episodes, as we do not include uncertainty in the
natural sources which dominate during these times, the prediction intervals are small and do
not capture the spread of the observations at these times.
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Figure 5.6: Amsterdam air pollution episode partitioned into contributions by sector, country,
and emitted component alongside the empirical coverage induced by the estimated prediction
intervals.

5.8.4 Warsaw 2019.10.19 - 2019.10.24

This episode in Warsaw is primarily driven by gaseous aerosol precursors (NOy, NHs; and
NMVOC), offering another valuable perspective on the method’s performance in cases where
the dominant influences are not from primary emissions. There are some systemic biases in
the model during the episode, which the method generally is not able to capture. Initially the
episode is dominated by Polish residential heating. However, on the evening of October 22nd,
contributions from the public power, industry, and traffic sectors increased. At the same time,
local contributions decrease as emissions from Germany and Czechia become more
significant. This shift also leads to a reduced local contribution to the prediction interval, even
though the interval itself remains relatively wide due to the rather large uncertainties
associated with these German and Czech emissions. Later in the episode, local residential
heating emissions once again dominate, resulting in a prediction interval largely shaped by
uncertainty in local emissions, despite the model tending to overestimate actual pollution
levels during this time.

The empirical coverage is 75.97%. This coverage is somewhat lower in part due to the bias
below, then bias above that the model has during the two main peaks of the episode. Despite
this, the width of the prediction interval generally shows good alignment with the spread of
observations in most cases. There are outlier observations on the 19th and the 24th from
urban stations, which the model is not intended to replicate, that also contribute to lower
coverage and are outside the spread of observations from suburban stations.
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Figure 5.7: Warsaw air pollution episode partitioned into contributions by sector, country, and
emitted component alongside the empirical coverage induced by the estimated prediction
intervals.

5.9 Exploring Temporal Profile Aggregation Methods

In Section 5.8, each of the figures showing the empirical coverage used the same method to
aggregate the temporal uncertainty: a rolling twenty-four hour window. There are other
simplifications which one can consider, which can notably affect the results. Here we explore
some various aggregation methods for temporal uncertainty to see the extent to which these
choices matter, and what yields realistic prediction uncertainty quantification. In addition to a
rolling 24 hour window, we consider the maximum, mean, and median temporal uncertainty
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from the previous day as a method to aggregate these temporal uncertainties. The reason we
use the day before is that it allows some time for air pollution to travel to each target city,
whereas using the instantaneous temporal uncertainties from all contributing emission
sources would not be realistic. In order to reliably compare the empirical coverages, each
episode is run over the same period, cropping out the first day across temporal aggregation
methods so that the prior day’s temporal uncertainties can be leveraged.

Generally we find that the 24 hour rolling window, mean, and median yield relatively similar
results, with a rather small contribution to the uncertainty derived purely from accounting for
emissions uncertainty. On the other hand, aggregating the maximum uncertainty results in the
most noticeable change in the total prediction interval. Without accounting for all sources of
uncertainty, it remains difficult to numerically compare against observations to achieve a
desired coverage.
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Figure 5.8: Warsaw episode: Prediction interval and associated empirical coverage achieved
by aggregating the temporal profile variances using the maximum value of the previous day.
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Figure 5.9: Warsaw episode: Prediction interval and associated empirical coverage achieved
by aggregating the temporal profile variances using the mean value of the previous day.
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Figure 5.10: Warsaw episode: Prediction interval and associated empirical coverage achieved
by aggregating the temporal profile variances using the median value of the previous day.
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Figure 5.11: Warsaw episode: Prediction interval and associated empirical coverage achieved
by aggregating the temporal profile variances using a 24 hour rolling window.

5.9.2 Bratislava
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Figure 5.12: Bratislava episode: Prediction interval and associated empirical coverage
achieved by aggregating the temporal profile variances using the maximum value of the
previous day.
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Bratislava - Empirical Coverage = 81.02%
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Figure 5.13: Bratislava episode: Prediction interval and associated empirical coverage
achieved by aggregating the temporal profile variances using the mean value of the previous
day.
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Figure 5.14: Bratislava episode: Prediction interval and associated empirical coverage
achieved by aggregating the temporal profile variances using the median value of the previous
day.
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Figure 5.15: Bratislava episode: Prediction interval and associated empirical coverage
achieved by aggregating the temporal profile variances using a rolling 24 hour window.

5.10 Exploring Prediction Interval Confidence Levels

It is valuable to assess empirical coverage across multiple confidence levels in order to
understand how closely the observed coverage aligns with the theoretical (nominal) coverage.
This helps evaluate the robustness of the predictive uncertainty estimates, beyond any single
confidence threshold. Rather than relying solely on one level, typically 95%, examining
alternative levels can reveal whether the method consistently captures the underlying
predictive distribution. In this brief analysis, we consider 80% as an alternative level that might
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be of practical relevance to users of CAMS. While 80% represents a lower confidence
threshold, it is often favored in scenarios where greater tolerance for uncertainty is acceptable
or where less conservative estimates are needed.

For Bratislava, the empirical coverage of the 95% prediction interval is 95.04%, matching the
nominal level. This might actually indicate overestimation of the prediction variance, as several
sources of uncertainty (such as those arising from natural emissions, meteorological
variability, model resolution and non-linear chemical processes) are not fully accounted for in
the modeling framework. The empirical coverage at the 80% prediction interval is 70.6%,
reflecting a slight under-coverage. The model achieves near-nominal coverage at the 95%
level (95.6%), but under-covers at the 80% level (70%). This indicates that while the extreme
quantiles are well captured, the central part of the predictive distribution is too narrow,
suggesting some underestimation of uncertainty for intermediate confidence levels.

Bratislava - Empirical Coverage = 70.6%
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Figure 5.17: 80% Prediction interval assuming using a rolling 24 hour mean for the temporal
uncertainty.

5.11 Conclusions

In this chapter, we reviewed contemporary methods for uncertainty propagation, introduced a
novel analytical approach tailored for CAMS operational applications, and examined a range
of correlation structures that modelers may consider. We also evaluated the method’s
performance across selected air pollution episodes in Europe during 2019. Overall, the
approach demonstrates good performance and produces plausible uncertainty estimates,
offering potential value to users of CAMS data products by quantifying the uncertainty
associated with air quality forecasts.

The proposed method leverages readily available information from CAMS services, utilizes
the most granular uncertainty data accessible, is grounded in mathematical rigor, and yields
interpretable uncertainty estimates. Furthermore, the approach is computationally efficient,
making it well-suited for rapid operational deployment. A key strength of the method is its
flexibility, allowing modelers to incorporate domain-specific knowledge of realistic correlation
structures. It is also extendable in that additional sources of uncertainty can be added on,
allowing for refinement of the prediction variance estimates.

Despite these methodological choices, there are important limitations to keep in mind. Most
critically, the underlying emissions uncertainties themselves are highly uncertain, often due to
limited data, expert judgment, or assumptions in the original inventories. This adds a layer of
ambiguity to any propagated uncertainty estimates. Second, the degree of correlation between
emissions could significantly influence the results, but in practice, the true correlation structure
is poorly understood and rarely quantified. While the correlation structure is not known, the
predictive distribution can also be challenging to specify. Throughout we have used an
assumed Gaussian distribution with the caveat that this can occasionally yield non-physical
prediction intervals containing negative values. Future work could strive to correct this once
additional sources of uncertainty have been identified and accounted for, by, for example
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imposing a positive support distribution, using truncated or censored models, and considering
nonparametrics and quantile methods. Lastly, our approach assumes that the relationship
between emissions and modeled outputs is approximately linear. While this simplification
makes the analysis more feasible, it may not fully capture complex, nonlinear interactions
present in some atmospheric processes.
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6 Propagation of emission uncertainties into the ACT service and
potential for operational implementation

6.1 Introduction

In this chapter, we present the results related to the calculation of error propagation from
emissions to pollutant concentrations using the Air Control Toolbox (ACT) metamodel (Colette
et al, 2022), which is widely used in the CAMS policy support framework
(https://policy.atmosphere.copernicus.eu/) alongside the EMEP (Simpson et al., 2012) and
LOTOS-EUROS (Manders et al., 2016) models.

The ultimate goal is to provide a methodology that can be easily translated into an operational
service to be integrated into the CAMS suite for estimating uncertainties in modeled pollutant
concentrations stemming from uncertainties in emissions.

The study focuses on the pollutant PM2s, but the methodology could be easily extended to
other pollutants such as PM+o, NO; and Os.

As already explained in the previous chapter, the standard approach for calculating error
propagation in a deterministic model involves performing Monte Carlo experiments by
perturbing the input variables or parameters with known uncertainties, in order to analyze how
these uncertainties propagate to the output variables. However, this method is extremely
computationally expensive and may be less suitable for operational systems that are required
to run continuously and provide outputs every day.

Therefore, we adopted a similar approach to the one described in the previous chapter,
favoring an analytical calculation of error propagation and the use of the ACT metamodel,
which acts as an emulator of the CTM CHIMERE model (Couvidat et al., 2025) with respect
to emission variations. One advantage of the analytical approach is the improved ability to
identify the variables or sources that contribute most to uncertainty, as well as better control
over the calculations being performed.

This section presents the results of the propagation of emission uncertainties to pollutant
concentrations using the Air Control Toolbox (ACT) metamodel.

6.2 Total Emission and Temporal Uncertainty propagation using ACT

This section describes the methodology used to assess pollutant concentration variations, per
country and sector, arising from uncertainties in temporal emission factors and annual
emissions. The method is structured in the following phases:

1. Calculation of daily emission uncertainties at an hourly resolution, by pollutant and
sector.

2. Mapping of these uncertainties onto the ACT model sectors.

3. Application of ACT to estimate the resulting range of variation in PM.s concentrations
associated with sectoral emission uncertainties.

The first step is detailed in Section 6.2.1, while the second and third steps are covered in
Section 6.2.2.
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6.2.1 Error propagation on hourly emissions at daily base

Two types of uncertainties associated with anthropogenic emissions were considered: those
related to the total annual emissions themselves, and those related to the temporality of these
total emissions.

We first calculated the uncertainty in hourly emissions based on the uncertainty in the temporal
profiles provided by BSC, which were introduced in Section 5.7 of this report and are described
in greater detail in Deliverable 5.1 (Guevara et al., 2024).

Starting from the annual emissions per country, pollutant, and sector, E_ann,,; s , the hourly
emission for a given hour and day of the year can be calculated as:

F_h Fw F_m
_ -"*onolsec - polsec ~"tnalsec
E Npotsec = ( ” ) X ( - ) X ( - ) X E_anng,g c,.

Where F_hyoisec: F_Wporsec, @aNd F_my,; 5o are the unnormalized hourly, weekly, and monthly
temporal profiles corresponding to that specific hour and date. The division by 24, 7, and 12
ensures normalization, such that the sum of all hourly emissions E_h,,; s.. over the entire year
equals the annual emission E_ann,; sec-

(Eq. 6.1)

To compute the uncertainty of E_h,, .. based on the uncertainties of the temporal
factorsF _hpopsec: F_Wpotsec, @Nd F_myq; s W apply the standard rules for error propagation
in a multiplicative function of the form:

f = aABC

where a, A, Band C are E_anny,, sec, F_hpoisec: F_Wpot,sec» @Nd F_my, g 5ec, respectively. Since
in this step the annual emission E_ann,,; s is not treated as uncertain, it is considered a
constant multiplicative parameter. Assuming that the uncertainties of the three variables are
uncorrelated, it can be shown through standard mathematical derivation (Taylor, 1997) that
the relative uncertainty associated with f is approximated by:

‘- J(%ﬂ)z E (%”’)2 + (Z_C)z Eq. 6.2

WIth g, ,05, o, the uncertainties associated with variables A, B and C respectively.

Returning to Eq. 6.1, and based on Eq. 6.2, the relative uncertainty of hourly emissions due
to the uncertainties in the temporal profiles can be expressed, for each country, pollutant, and
emission sector, as follows:

2 2 2
Tpolsec  _ (o—hpa.f,sec ) + (J—Wgal,sec ) + ("—ngo!,sec)
L F_hyorsec F Wyalsec F My o1 560

where oy, 5 is the uncertainty in the hourly emissions, and o_hpoisec; T _Wporsec a@nd
0_Myoisec are the uncertainties associated with the hourly, weekly, and monthly temporal
profiles F_hyo1 secr F_Wporsec: F_MporsecreSpectively.

Eq. 6.3

Varying emission uncertainties on an hourly basis is not well suited for the ACT model, which
is primarily designed to handle emission scenarios that are applied and maintained
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consistently over longer periods. In addition, depending on the emission sectors, the hourly
variability of uncertainties can be quite large and we observed that in some cases a maximum
uncertainty is associated with the hours when emissions are lowest. It was then decided, for
a given pollutant and sector, to apply the same relative uncertainty over all hours of a day.
The relative uncertainty associated with the hour (hmax) with the highest hourly temporal
factor (F_hj3i9%.) was chosen and named ro_h/li%; . in the rest of the document

o hhmax

hhmax — _—"polsec
ro_ pol,sec™ F phmax
-"*pol,sec

Therefore, defining the overall relative hourly uncertainty in emissions as e_hyq;5.c , EQ. 6.3
becomes:

2 2
2 a_Wyar ag_m,.;
. hmax pol.sec pol,sec
(? U—hpo!.ssc) + ( ) + (

F_w F_m

—"pol.sec =""*pol.sec

\ Eq. 6.4

eh

Mpolsec =

It is important to emphasize that this approach is both relevant and applicable because the
simulation system used by INERIS — also employed to train the ACT model — now relies on
CAMS-TEMPO. As a result, total annual emissions are effectively converted into hourly
emissions using the same temporal profiles presented in Guevara et al. (2024).

It should be noted that this is one possible approach, but not the only one, for deriving a
representative value of hourly relative uncertainty that reflects the variability over an entire
day. Alternative methods could use:

1. the relative uncertainty calculated from the daily maximum absolute uncertainty
2. the maximum relative uncertainty over the day
3. the average relative uncertainty over the day

Method 1 (maximum absolute uncertainty) would give results very close to the implemented
method because it is very often the same hours that show the highest hourly temporal factor
and absolute uncertainty. Method 2 (maximum relative uncertainty) would overestimate
uncertainties by occasionally selecting very high values that, in reality, apply only to low
emissions (i.e. low hourly temporal factor). In method 3, the results do not differ significantly
from those of the chosen method. The key distinction is that the chosen method is better suited
to prioritizing the values associated with the strongest temporal factors, rather than assigning
equal weight to all factors as in method 3.

In a second step, the uncertainty associated with annual emissions was added to the
uncertainties calculation with the assumption that these uncertainties are not correlated with
those associated with the time profiles.

For the ACT model, the most appropriate uncertainties are those provided—within the scope
of this project—by TNO for each country, sector, and pollutant (Super et al., 2023; 2024).
These country-level uncertainties offer a sufficiently smooth spatial representation (at least as
a first-order approximation) to remain consistent with the fundamental assumptions
underpinning the ACT meta-model.
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The starting point remains Eq. 6.1, except that now the variable E_ann,,, <. is also treated as
uncertain.

By repeating the same steps as before, the resulting relative uncertainty—by country,
pollutant, and emission sector—that accounts for both the temporal emission profiles and the
annual total emissions is given by the following formula:

2 2 2
2 F_w a_m E
R . I i 1 o_E_ann
_h_tot ol,sec — (?'U_h e ) + e + | —E===E) + olsec
poc. pol.sac Fw F_m E_ann

- polsec volsec vol.sec

TNO uncertainties are provided as annual estimates in both absolute and relative standard
deviations. However, following the recommendations of the data providers, we exclusively use
the relative standard deviations, denoted as ¢_E_ann,,; ... The equation used to compute the
total relative uncertainty e_h_toty; s is therefore as follows:

2 2
2 o_w o_m 2
_ . hmax - polsec - polsec
S—h—tOtr‘o!.sec - J(? a_h po!.ssc) + (F_w ) + (F_m ) + (E_E_annpOI'sec )

polsec polsec

Eq. 6.5

6.2.2 Error propagation in ACT

Before describing how sectoral emission uncertainties were computed and incorporated into
ACT, we recall the formulation of the ACT model.

The Air Control Toolbox (ACT) meta-model (Colette et al., 2022) is the first air quality meta-
model developed from the CHIMERE model to explore scenarios of anthropogenic emission
reductions and their impacts on air quality.
ACT focuses on emissions from six main sectors: agriculture (AGR), industry (IND),
residential heating (RH), road transport (TRA), shipping (SHP) and others (OTH) — including
solvents, aviation, offroad, waste. It is calibrated every day using 16 perturbed CHIMERE
simulations (Couvidat et al., 2025), in which emissions from the six sectors are reduced by
different percentages across the entire domain to capture system variability, along with one
unperturbed reference simulation.

From a mathematical perspective, ACT is a second-order polynomial that estimates the
variation in pollutant concentrations based on the relative changes in emissions with respect
to a reference scenario, for each emission sector.
Originally developed to estimate concentration changes for PM1g, PM2s, O3, and NO,, ACT
has been extended within the scope of this project to also handle major PM1o subspecies, as
detailed in Deliverable 6.3 (Zhang et al., 2025).

The complete formulation is given by:
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— 2 2 2
AC = aagr Sagr + Jgagrsagr + Xing ‘g;‘nd + ﬁa‘nd ‘g;‘nd + Ures Eras + Otra Etra + ﬁtra Etra +
2 P . .
®shp Sshp + ﬁsh:ﬂ Eshp + oth Eoth + lgoth £oth + Yﬁgr.!’nd Sagr €ind + j”tra.a,gr Etra Sagr +

Yera,ind €tra Si’nd +6 Sﬂgr ) E!’nd "Eres " ftra’ EShP ) SOﬂE

Eq. 6.6
Where:

AC represents the resulting change in pollutant concentration due to emission reductions.
Knowing the reference concentration C,., it is possible to compute the concentration under

the emission reduction scenario as Cugr ind res,tra,shp,oth -

Eagrs €inds Eres» Etrar Eshpr Eotn Are the percentage reductions in emissions by sector, expressed
as values in the range [0,1]. A value of 0 means no reduction, while a value of 1 indicates a
complete reduction.

The coefficients:

aagr! ﬁagr! Uing, ﬁa’nd! Arosr Aira ﬁtrar ashp! ﬁshpr Aoth, ﬁoth! ]"agr.:'ndrj"tra agr: Ytra.inds 4
are parameters obtained by fitting Eq. 6.6 to the perturbed CHIMERE simulations.

These parameters vary by grid cell, time step, and pollutant, and are constrained such that
the ACT function passes through the origin. In other words, if there are no emission changes
(Eagrs €inds Eres» Etrar Eshp» Cotn= 0.), the resulting concentration change must be zero (4C =
0).

As we can see, the ACT model does not explicitly handle information related to specific
chemical species. Instead, it only accounts for the percentage variation in emissions per
sector.

Moreover, the emission sectors used in ACT do not follow the GNFR classification, as
previously discussed, but rather an aggregated sectoral structure specific to ACT:

AGR: Agriculture (NFR_K AgriOther + NRF_L Livestock)

IND: Industry (NFR_A Public Power + NFR_B Industry + NFR_D Fugitive)

RH: Residential (NFR_C OtherStationary Combustion)

TRA: Traffic (NFR_F1 Road Transport Exhaust gasoline + NFR_F2 Road Transport
Exhaust diesel + NFR_F3 Road Transport Exhaust LPG + NFR_F4 Road Transport
Non exhaust)

e SHP: Shipping (NFR_G Shipping)

e OTH: Others (NFR_E Solvents + NFR_H Aviation + NFR_I Offroad + NFR_J Waste +
NFR_M Other)

Therefore, the sector- and pollutant-specific relative uncertainties calculated in the previous
section must be adapted before being input into ACT.

To convert emission uncertainties that depend on both pollutant and sector into uncertainties
that depend only on the sector, we associate each sectoral uncertainty with the dominant
emitted species for that sector.

More specifically, for GNFR sectors:

e A F1,F2, F3, G, H, | — associated with NO4x emission uncertainties
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B — associated with SO emission uncertainties

C — associated with PM25 emission uncertainties

D, E, J, F4 — associated with NMVOC emission uncertainties
L, K — associated with NH; emission uncertainties

ACT sectors are, in most cases (except for Shipping and Residential), aggregations of two or
more GNFR sectors. So, to each ACT sector, we assigned an uncertainty equal to the
maximum of the uncertainties associated with the contributing GNFR sectors.

For example, for the agricultural sector:
Eagr = MAX (Scyrr, . Sonrr,)

To calculate the perturbation in pollutant concentrations due to emission uncertainties, the
relative errors—calculated as described above—are injected into the ACT model trained for
that specific pollutant.

The hourly concentration variation per pollutant is therefore expressed as:

delta_h(concy,y) = T ACT (Eagr Eingr Eres: Etrar Eshps Eoth) Eq. 6.7

In this case, ACT trained for PMs is used to propagate the uncertainties and estimate their
impact on this specific pollutant.

6.3 General analysis of the results: from uncertainty on emissions to
uncertainty on concentrations

The method described in 6.2 is applied to assess the impact of emission uncertainties on
modeled hourly concentrations of air pollutants across various European cities.

Specifically, the reference PM.s concentration over each city is calculated. Then, using
Equation 6.7, we estimate the resulting concentration ranges by considering either:

e the uncertainty associated solely with annual emissions, or
e the full uncertainty, including uncertainties on both annual emissions and temporal
emission factors

6.3.1 Emissions uncertainties as used by ACT

We first present the emission uncertainties as they are incorporated into the ACT model,
already aggregated by ACT sectors. As explained in section 6.2.2, for each sector, the
uncertainty associated with the most representative pollutant of the sector is selected, and if
the ACT sector is made up of several GNFR sectors, the maximum uncertainty between these
sectors is retained. For example, for sector RH, i.e. residential heating (also called residential
sector), PM2s emission uncertainties from the GNFR sector C is retained.
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Figure 6.1 : Hourly relative uncertainties by ACT sectors (AGR, IND, RH, TRA, SHP, OTH)
calculated for some selected cities over the entire year 2019. The triangles show uncertainties
derived from total annual emissions uncertainties only (Super et al., 2023; 2024), while the
boxplots represent the full uncertainties i.e. including both uncertainties from annual emissions
and the ones associated to the temporal factors (Guevara et al., 2024).

What is striking in these figures is that the sectors with the greatest uncertainty are the RH
and OTH sectors. For the latter, it is the uncertainty on the total annual emissions that induces
these high values. More precisely, a detailed examination of the GNFR sectors contributing to
the ACT sector (Appendix C, Figure C1), shows that it is almost always sector E (Solvents
sector) which has the maximum uncertainty due to uncertainties on total NMVOC emissions.
For the RH sector, the responsibility for uncertainty is shared approximately equally between
that linked to total annual emissions and that linked to temporality. This sector is also the one
that shows the greatest variability in emissions uncertainty over time. If we break down the
temporal uncertainty (Appendix C, Figure C2), we can see that this is mainly due to the
uncertainty associated with the monthly profile, which varies greatly from one month to the
next. Note that for some sectors and pollutants (GNFR D, E, G, |, J etc.) the relative
uncertainties from Guevara et al., (2024) do not vary over time. It is also quite notable that the
uncertainty values are quite similar from one country to another, whether in terms of total or
temporal uncertainty.

6.3.2 Uncertainties in concentration for cities

Figure 6.2 presents the hourly relative concentration uncertainties for each city, derived both
from the total uncertainties (green box plots) and from those attributable exclusively to annual
emissions (orange box plots). This is a summary figure as it represents all values for the year.
However, it allows us to see if there are any significant differences between cities. The annual
variability of the standard deviation of concentrations is roughly the same in these cities, with
a median relative uncertainty (relative standard deviation) between 0.4 and 0.55. Some cities
have less uncertainty in concentrations: Palermo (0.24), Marseille (0.27) and Athens (0.32).
This is probably due to the fact that the sectors that contribute most to PM2s precursor
emissions are different for these Mediterranean cities, with a smaller share from the residential
sector (which has high levels of uncertainty). However, it is important to note that the
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uncertainty we estimate in this study is only the uncertainty of anthropogenic emissions,
whereas these cities are more affected than many others by natural emissions such as, for
instance, desert dust.

Concentration variability per city
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Figure 6.2 : Box plots of the relative uncertainties calculated for PM2s concentrations from
sectoral uncertainties on emissions for selected cities. Orange box plots represent the relative
uncertainties associated with the uncertainties on total annual emissions only and the green
box plots the concentrations associated with the full uncertainties (total annual + temporal
factors). All hourly concentrations of the year 2019 are represented in the box plots.

This figure also allows for a quick comparison between the concentrations obtained with the
complete uncertainties and those with the only annual emission uncertainties. Taking into
account temporal uncertainty in addition to that in the annual total leads to an increase in
uncertainties, with medians increasing by 25 to 85% depending on the city. Once again, the
cities least affected by the inclusion of temporal uncertainty are the Mediterranean ones, for
the same reasons mentioned earlier.

6.4 Case studies

We selected the same cities and air pollution episodes presented in Table 5.3. The aim is not
only to present the results obtained with ACT, but also, through comparison with the outcomes
in section 5, to evaluate how different modeling approaches and methodologies can lead to
varying results.

We present the findings for the cities of Bratislava, Frankfurt, Amsterdam, and Warsaw
focusing on PM2 s concentrations.

A comparison with observed data is included to evaluate where the actual measurements fall
within the modeled concentration ranges. The observational data come from EEA (European
Environment Agency) Air Quality monitoring stations and are the same as those used for
model validation (https://policy.atmosphere.copernicus.eu/daily/model-evaluation). Only
background monitoring stations were considered for this analysis.
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In addition to quantifying the total uncertainty and that associated with the annual emission
uncertainties, the ACT model is also used to isolate the contribution of each of the six ACT
sectors (AGR, IND, RH, TRA, SHP, AND OTH) to the overall concentration uncertainty. By
applying Equation 6.7 individually to each &sec (defined as the relative uncertainty associated
with the emissions of a given sector), the sector-specific impact on modeled PMas
concentrations was computed. These individual contributions are then normalized to the total
concentration uncertainty, thereby providing a sectoral breakdown of the propagated emission
uncertainty.

The following sections present the results for PM2s concentrations across the cities of
Bratislava, Frankfurt, Amsterdam, and Warsaw over the different pollution episodes.

6.3.3 Bratislava: 2019.02.12 - 2019.02.18

The pollution episode that occurred in Bratislava is also well captured by the CHIMERE model,
which accurately simulates the increase in PM2s concentrations between February 15 and 19
(Figure 6.3). Although observed values are significantly higher than the modeled
concentrations (dark green line), they remain quite within the variability range when emission
uncertainties are taken into account, with an empirical coverage of 71% when total emission
errors are taken into account. It is also evident that a big contribution is given by the uncertainty
originating from the temporal disaggregation of emissions (Figure 6.3 and Table 6.1).
Regarding the sectoral breakdown of uncertainty (Figure 6.4), the residential sector
contributes the most, with an average share of 55-57% of the total variability (column 5, Table
6.1). This is consistent with the nature of the episode, which is primarily driven by residential
emissions, as also highlighted in Section 5.8.1

PM25 hourly concentrations at Bratislava,
from 12-02-2019 to 19-02-2019

Total Annual + Temporal profiles
Bmm Total annual emissions
80 | mmm== REFCONC
«  background

60

40 +

Concentration (pg/m3)

204

Figure 6.3: Hourly PM.5 concentrations during the pollution episode in Bratislava. The dark
green line represents the concentrations modeled by CHIMERE. The green shaded area
indicates the variability range due to uncertainties in national annual emission, while the light
green shaded area represents the total uncertainty range (including both temporal factors and
national total emission uncertainties). Grey dots correspond to observations from EEA
background monitoring stations in Bratislava.
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PM25 hourly concentrations at Bratislava,
from 12-02-2019 to 19-02-2019
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Figure 6.4 : Sectoral breakdown of the propagated emission uncertainty during the Bratislava
episode. The dark green line represents the PM. s concentrations modeled by CHIMERE. The
colored areas indicate the contribution of emission uncertainties from different ACT sectors to
the variability in PM2s concentrations. Specifically, light violet represents traffic, pink
represents industry, green represents agriculture, orange represents the residential sector,
light blue represents shipping, and grey corresponds to other anthropogenic GNFR sectors
not included in the previous categories (solvents, aviation, off-road, waste, others).

Table 6.1 : Summary table of the Bratislava episode with values averaged over the entire
period. The first row refers to the results when considering the total emission uncertainty, while
the second row refers to the uncertainty due to national annual emission only. The averaged
variables, from left to right, are: the PM.s concentration from the reference simulation, the
concentration variability associated with emission uncertainty, and the percentage contribution
to the uncertainty from the different ACT sectors (traffic, industry, agriculture, residential
sector, shipping, and others)/ Last column refers to Empirical Coverage.

Bratislava

Err CRef delta(C) TRA IND AGR RH SHP OTH Empirical

type Coverage
pg/m3 | pg/m? % % % % % % %

Total 22.9 +12.3 6 5 25 55 1 7 71

Ann 229 7.0 3 5 22 57 2 11 55
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6.3.4 Frankfurt 2019.02.12 - 2019.02.19

In the case of Frankfurt, CHIMERE overestimates the increase in PM2s between February 14
and 16, while it aligns more closely with observations on the other days (Figure 6.5). In this
case as well, visualizing the concentration variations associated with emission uncertainties
supports the interpretation of the model-to-observation comparison, with an empirical
coverage reaching up to 46%. For Frankfurt, the sector contributing the most to the uncertainty
remains the residential sector (Figure 6.6), accounting for 31-33% of the total error. However,
other sectors also contribute significantly, in order of importance: Agriculture (24-30%),
Others (including solvents, aviation, offroad, and waste) with a contribution of 20-30% and
Traffic (3—10%) (Table 6.2).

PM25 hourly concentrations at Frankfurt,
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Figure 6.5 : Same as Figure 6.3, but for the pollution episode in Frankfurt.

PM25 hourly concentrations at Frankfurt,
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Figure 6.6 : Same as Figure 6.4, but for the pollution episode in Frankfurt.
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Table 6.2 : Same as Table 6.1, but for the pollution episode in Frankfurt.

Frankfurt
Err Crer | delta(C) TRA IND AGR RH SHP OTH | Empirical
type Coverage
Hg/m® | ug/md % % % % % % %
Total 22.9 +11.7 10 7 30 33 0 20 46
Ann 22.9 17.8 3 8 24 31 1 30 34

6.3.5 Amsterdam 2019.03.16 - 2019.03.25

The case of Amsterdam differs from the previous ones. As described in Section 5.8.3, this
episode is not primarily driven by strong residential emissions but instead features an initial
phase dominated by natural sources, followed by a second period influenced by air masses
carrying anthropogenic pollutants (Figure 6.7). Since uncertainties related to natural emissions
are not considered, the resulting propagated error remains low during the first days. In
contrast, an increase in uncertainty is observed in the latter period. During this second phase,
the main contributor to the total error is Others sector (28-39%), followed by Agriculture (23-
33%) (Figure 6.8 and Table 6.3).

It is also observed that, the overall variability in PM25s concentrations remains below 50%,
which is lower compared to the other case studies. As will be further discussed in the following
section, this is primarily due to the fact that the residential sector—associated here with the
highest uncertainty—plays a less dominant role in this episode. Consequently, when
emissions from the residential sector are not the main driver of concentrations, the associated
propagated uncertainty tends to be reduced.

PM25 hourly concentrations at Amsterdam,
from 16-03-2019 to 26-03-2019
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Figure 6.7 : Same as Figure 6.3, but for the pollution episode in Amsterdam.
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PM25 hourly concentrations at Amsterdam,
from 16-03-2019 to 26-03-2019
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Figure 6.8 : Same as Figure 6.4, but for the pollution episode in Amsterdam.

Table 6.3 : Same as Table 6.1, but for the pollution episode in Amsterdam.

Amsterdam

Err CRef delta(C) TRA IND AGR RH SHP OTH | Empirical

type Coverage
pg/m3 | ug/m? % % % % % % %

Total 229 9.8 7 11 33 10 11 28 49

Ann 229 16.8 5 13 23 9 11 39 36

6.3.6 Warsaw 2019.10.19 - 2019.10.24

In the case of Warsaw, the model tends to overestimate the observations although it remains
within the expected variability range (Figure 6.9) with an empirical coverage of 73% when total
emission error is taken into account. The sector contributing the most to the propagated
uncertainty is Residential, accounting for 37—-38% of the total error, followed by the Agriculture,
which contributes 28—-32% (Figure 6.10 and Table 6.4).

D6.2 79



CAMEO

PM25 hourly concentrations at Warsaw,

from 19-10-2019 to 25-10-2019
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Figure 6.9 : Same as Figure 6.3, but for the pollution episode in Warsaw.
PM25 hourly concentrations at Warsaw,
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Figure 6.10: Same as Figure 6.4, but for the pollution episode in Warsaw.
Table 6.4: Same as Table 6.1, but for the pollution episode in Warsaw.
Warsaw
Err CRef delta(C) TRA IND AGR RH SHP OTH Empirical
type Coverage
Mg/m® | ug/md % % % % % % %
Total 22.9 1241 8 13 32 38 0 8 73
Ann 229 +15.4 5 15 28 37 1 14 47
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6.4 Sensibility to temporalization

The issue of how to validly assign errors related to the temporal distribution of emissions does
not have an obvious solution. For example, the concentrations at a specific spatial point within
our domain—Iet’s denote it as point j—depend on a set of emissions originating from various
locations across the domain, which are not necessarily in close proximity. Consequently, the
error affecting the concentration at that point may be associated with different temporal
uncertainties, since the contributing emissions may not have occurred at the same time.

If local emissions are assumed to be predominant, the temporal error corresponding to the
same day could be a reasonable approximation. On the other hand, if it is considered that the
emissions influencing concentrations at the point are more distant, it may be more appropriate
to account for the error from the previous day—or even earlier.

Since we are not able to modulate the temporal error of emissions based on the time it takes
for them to reach point j, and can only apply the same temporal offset to all emissions, we
decided to conduct a sensitivity test. Two scenarios were considered: (1) the emission errors
from day x were propagated to the concentrations on the same day: “Same day scenario” (x),
and (2) the emission errors from day x—1 were propagated to the concentrations on day x:
“Day before scenario”. The resulting PM2s concentration errors in the two cases were then
compared over different cities: Paris, Lyon, Marseille, Milan, Palermo, Rome, Brussels,
Barcelona, Berlin, Frankfurt, Athens, Rotterdam, Amsterdam, Utrecht, Oslo, Warsaw,
Bratislava.

The results show that the differences between the relative PM2s concentration errors in the
two scenarios are very small. Considering the cities observed throughout the entire year 2019,
75% of the hourly concentrations show a difference of only 0.04% with respect to the total
PMo. s concentration, with a maximum difference of 4.6% observed in Warsaw on 1 May.

To better illustrate the differences between the two scenarios, Figure 6.11 presents the case
of Warsaw. The top plot corresponds to the Same Day scenario, while the bottom plot
corresponds to the Day Before scenario. As can be seen, the differences are barely
noticeable, with a slight deviation around midnight on 1 May.

The reason why the differences are not large at all lies in the fact that, although the errors on
temporal factors can be quite significant (as we have already shown), their day-to-day
variability is not especially high.

Same Day scenario
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Day Before scenario

PM25 hourly concentrations at Warsaw,
from 30-04-2019 to 02-05-2019
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Figure 6.11 : Hourly PM.s concentrations in Warsaw from 30 April to 2 May 2019 under the
Same Day scenario (top panel) and the Day Before scenario (bottom panel). The dark green
line represents the concentrations modeled by CHIMERE. The green shaded area indicates
the variability range due to uncertainties in annual emission, while the light green shaded area
represents the total uncertainty range (including both temporal factors and national annual
emission uncertainties). Grey dots correspond to observations from EEA background
monitoring stations in Warsaw.

6.5 Conclusion

This section presented a methodology for propagating emission uncertainties to PMas
concentrations, accounting for both uncertainties in temporal allocation factors and total
annual emissions. The approach leverages the ACT metamodel, starting from an initial
estimate of hourly emission errors derived through analytical error propagation from temporal
factors (Guevara et al., 2024), as well as from country-, sector-, and pollutant-specific annual
emission uncertainties (Super et al., 2023, 2024). The current implementation provides
estimates of variability in PM2s concentrations over major European cities, but the
methodology can be readily extended to all grid points within the modeling domain and to
additional pollutants.

The method is computationally efficient, requiring minimal processing time and resources,
making it particularly well suited for potential operational deployment.

Results indicate relatively large propagated errors, which are consistent with the substantial
uncertainties associated with emissions—especially those related to temporal disaggregation
factors. The residential sector is by far the most affected by temporal uncertainties, and
consequently, the total propagated errors are highest in regions and periods where this sector
dominates.

Notable differences arise when comparing this method to that described in chapter 5. These
discrepancies can be attributed to several factors. While both methods adopt an analytical
approach to variance estimation, they rely on different formulations of uncertainty propagation.
In the present method, uncertainties are treated as independent, while the results presented
in chapter 5 assume some degree of correlation between emission sources. Furthermore, the
two underlying models, ACT and the Local Fraction method, differ substantially. Notably, ACT
does not distinguish between local and non-local emissions, meaning that the computed
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hourly emission errors are applied uniformly across the domain. This may lead to an upper-
bound estimate of the concentration errors.

Further investigation is needed to fully understand the drivers of divergence between the two
approaches. Nevertheless, the results underscore the fact that different methodologies for
uncertainty propagation can themselves lead to substantial variability—highlighting the
importance of cross-validation in air quality uncertainty assessments.
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10. APPENDIX A
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Figure A1 Box quantile diagrams summarizing the local contribution to PM+o,, primary PMyo,
S04, NO3s and NH4. concentrations for the 79 European cities, For each of the 3 plots, the
receptor is the same: from left: 1) area weighted receptor = source, 2) population weighted
receptor = source and 3) centre grid cell. Within each plot, sources (and model resolution)
vary: ‘3x3 14 km’ means that the city source area is defined by 3x3 grid cells in 0.25x0.125
degree model resolution, ‘0.2x0.1 city’ means that core city area is the source and the model
is run in 0.2x0.1 degree resolution, ‘0.3x0.2 city’ means that core city area is the source and
the model is run in 0.3x0.2 degree resolution and ‘0.2x0.1 FUA’ means that FUA is the source
area and the model is run in 0.2x0.1 degree resolution. The box borders show the 10th and
90th percentile and the two extremities are the max and min values. The horizontal line within
the box represents the median.
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Fig A2: Total contribution/concentration (ug/m3) to NO2 concentrations in European cities (x-
axis for 0.2x0.1 degree resolution, y-axis for 0.3x0.2 degree resolution). The city source
areas are the core city area, but the receptor area is either the mid-grid cell, area weighted
concentrations for the core city or population weighted concentrations for the core city. The
size of the circles represent the total concentrations.
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Figure A3: Local contribution (ug/m3) to NO2 concentrations in European cities (x-axis for
0.2x0.1 degree resolution, y-axis for 0.3x0.2 degree resolution). The city source areas are the
core city area, but the receptor area is either the mid-grid cell, area weighted concentrations
for the core city or population weighted concentrations for the core city. The size of the circles
represent the local contribution (higher contribution means larger circles).
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Figure A4: Total contribution/concentration (ug/m3) to Os concentrations in European cities
(x-axis for 0.2x0.1 degree resolution, y-axis for 0.3x0.2 degree resolution). The city source
areas are the core city area, but the receptor area is either the mid-grid cell, area weighted
concentrations for the core city or population weighted concentrations for the core city. The
size of the circles represent the size of the total concentration.
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Figure A5: Local contribution (ug/m3) to O3z concentrations in European cities (x-axis for
0.2x0.1 degree resolution, y-axis for 0.3x0.2 degree resolution). The city source areas are the
core city area, but the receptor area is either the mid-grid cell, area weighted concentrations
for the core city or population weighted concentrations for the core city. The size of the circles
represent the local contribution (larger circles means smaller negative contribution).
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Figure A6: Effect of resolution on local NO2 contributions (ug/m3). The source area is
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average data.
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Figure A7: Effect of resolution on local O3 contributions (ug/m3). The source area is
always the core city area, the receptor area is either mid-grid cell, area weighted
concentrations in core city or population weighted areas in core city. Left column:
Daily data for 2019, middle column: monthly data for 2019, Right column: Yearly
average data.
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11. APPENDIX B

Table B1: European countries sorted by highest to lowest relative standard deviation for PM s.

Country Code Value
MDA
TUR
MKD
UKR
MLT
ALB
SRB
KOS
RUS
MNE
EST
BIH
CYP
BGR
GRC
BLR
LVA
HRV
IRL
ROU
ISL
DNK
LUX
SVN
AUT
HUN
LTU
FIN
ITA

CZE

D6.2

0.58452

0.524138

0.505146

0.469639

0.454142

0.452168

0.447338

0.44693

0.410813

0.409672

0.39876

0.396314

0.375146

0.370363

0.357632

0.350079

0.349286

0.345444

0.328036

0.324135

0.323057

0.321274

0.320765

0.316865

0.315645

0.312726

0.312338

0.310828

0.309557

0.300207
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SVK
NLD
NOR
POL
FRA
SWE
DEU
PRT
BEL
ESP
CHE

GBR

D6.2

0.297181

0.296421

0.295081

0.292615

0.29153

0.2904

0.284933

0.267561

0.262321

0.262187

0.24606

0.235246
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pm25 - PublicPower - JJA

pm25 - OtherStationaryComb - JjA
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Figure B1: The fractional contribution from each sector to PM.s in Summer 2019.
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Figure B2:

D6.2

pm25 - Shipj D
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pm25 - OffRoad - JFD

AgriOther - JFD

>

The fractional contribution from each sector to PM..s in Winter 2019.
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12. APPENDIX C

In sections 6.2 and 6.3, we showed that the variability in PM2s concentrations due to emission
uncertainties is often quite significant, reaching up to nearly 70% of the reference
concentration — see, for example, Table 6.1 for Bratislava. Furthermore, we observed that
this variability tends to be higher when the contribution from the residential sector is
predominant. In such cases, the variability is largely driven by uncertainties in the temporal
factors rather than by uncertainties in total annual emissions (Figure 6.3).

To explore this aspect further, we examined the uncertainties calculated for each GNFR sector
prior to their aggregation into ACT sectors. The uncertainties displayed here refer to the
pollutants used as proxies to characterize the uncertainty of each sector (see Section 6.2.2
for more details). Figure C1 shows relative hourly uncertainties by GNFR sector for the entire
year 2019, for the four countries corresponding to the cities used in the case studies of section
6.3. The triangles show uncertainties derived from annual emissions uncertainties only (Super
et al., 2023; 2024), while boxplots represent the full uncertainties i.e. including both
uncertainties from annual emissions and the ones associated with the temporal factors
(Guevara et al., 2024).

What clearly emerges is that GNFR sector C (Other Stationary Combustion), which
corresponds to the ACT residential sector (RH), is among the sectors with the highest
uncertainty in all the countries considered. Most values range between 0.5 and 0.8,
corresponding to very high relative uncertainties (50-80%).

It can also be observed that, in general, accounting for uncertainties in temporal profiles (box
plots in Figure C1) substantially increases the relative uncertainty compared to the case where
only annual emissions uncertainties are considered (triangles in Figure C1). This suggests
that the contribution to the total uncertainty is strongly due to temporal uncertainties.
Furthermore, observing the high errors associated with the residential sector (box plots in
Figure C1), it is evident why the concentration uncertainties are very high in cases where the
residential sector is dominant (see the case of Bratislava, Frankfurt and Warsaw, in sections
6.3.3, 6.3.4 and 6.3.6).

For the case of Amsterdam (section 6.3.5), one of the most relevant sectors is Others (which
includes GNFR sectors E, H, |, J, and M). Referring back to Figure C1, it can be observed that
the difference between the only annual emissions uncertainty and the total uncertainty is
particularly low for sectors E, H, and J. This explains why, for Amsterdam, the difference
between the variability associated with total emission uncertainty and that associated with only
annual emissions uncertainty is smaller than in the other cities analyzed.

It is also worth noting that the box plots for many sectors are very narrow. This indicates a low
variability in the hourly relative error, as previously discussed in Section 6.2.1 and 6.3.1.
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Figure C1 : Hourly relative emission uncertainties by GNFR sector calculated for the entire
year 2019. The box plots show uncertainties derived from both temporal factors (Guevara et
al., 2024) and annual emission uncertainties (Super et al., 2023; 2024), while triangles
represent the only annual emission uncertainties. The uncertainties refer to the four countries
corresponding to the cities presented in the case studies of the previous section: Slovakia, the
Netherlands, Germany, and Poland (from top to bottom).

As a complement to the analysis, Figure C2 presents the relative emission errors as
incorporated in the ACT model (Tof) in comparison with their individual components: the
relative error associated with the hourly factors, computed as the error corresponding to the
daily maximum hourly factor (Max Hourly), the relative error from weekly factors (Weekly) and
monthly factor (Monthly), and the relative error of annual emissions (Ann). In other words, Tot
corresponds to the left-hand side of Equation 6.5, while Max Hourly, Weekly, Monthly, and
Ann represent the four terms on the right-hand side, after being adapted as inputs for the ACT
model. Figure C2 shows these errors for the four countries discussed above (Germany, the
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Netherlands, Poland, and Slovakia), aggregated over all hours of the year 2019. It can be
observed that for many ACT sectors the relative error associated with hourly factors (Max
Houirly) is the largest contributor to the total error, while the annual emission uncertainty is the
strongest contributor to the Others sector. More generally, the combined contribution of the
three temporal factor errors (hourly, weekly, and monthly) exceeds that of the annual emission

error in most cases (except for Others and Shipping).
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Relative error for AGR sector
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Figure C2 : Relative errors distributed across ACT sectors: Industry, Traffic, Residential,
Agriculture, Shipping, and Others (from the top plot to the bottom) for the entire year 2019.
Each plot presents the total relative error as injected in ACT (Tot), along with its individual
components: the relative error associated with the hourly factors, computed as the error
corresponding to the daily maximum hourly factor (Max Hourly), the relative error associated
with the weekly distribution of emissions (Weekly), and that related to the monthly distribution
(Monthly), and finally, the relative error of the annual emissions (Ann).
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