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1 Executive Summary 

The Copernicus Atmosphere Monitoring Service (CAMS) currently offers a number of products 

to support decision and policy makers regarding mitigation of air pollution at the European 

scale (https://policy.atmosphere.copernicus.eu/). These policy products provide information 

about the main sources and drivers of air pollution, through so-called source apportionment or 

attribution (SA) or source receptor relationships (SR). A key factor influencing the variability in 

the CAMS source-receptor products is the diversity of source attribution methods. The current 

service employs three regional chemical transport models (CTMs)—LOTOS-EUROS, EMEP, 

and CHIMERE— each applying different source attribution techniques: tagging (contribution 

estimation), brute force (impact of 15% emission reductions), and surrogate modelling (impact 

of variable emission reductions). Due to the nonlinear chemistry involved in secondary aerosol 

formation, these methods can yield different results.  

This study assesses the consistency and comparability of source-specific PM contributions 

across the different CTMs and source attribution methods. To this end we have conducted 

comparative experiments across the three models (EMEP, LOTOS-EUROS, CHIMERE) and 

different source attribution methodologies (brute force (BF), local fraction (LF), 

tagging/labelling (TS) and non-linear surrogate modelling (SM)) using a harmonised set-up in 

terms of inputs (emissions, meteorology, boundaries) and setup (resolution and domain). 

Additionally, model results were compared with observational data from Positive Matrix 

Factorisation (PMF) and specific tracers to identify key areas of agreement, divergence, and 

opportunities for improvement. 

Key Findings: 

● Residential Biomass Combustion: Identified consistently as the dominant 

anthropogenic source of PM around the Mediterranean and by EMEP and LOTOS-

EUROS for Eastern Europe. Model results in general align well with the PMF data, 

though some regional spatial allocation issues with the emissions are identified (e.g., 

Barcelona), which indicates the dominance of this source may be overestimated in 

some areas. The contributions grow with increasing PM levels and due to its dominant 

primary PM share this source is hardly affected by nonlinear atmospheric processes 

and choice of attribution method. Differences are mainly due to CTM differences in 

surface layer depth (results show a strong sensitivity to this parameter) and mixing 

processes.   

● Agriculture: CHIMERE highlights agriculture as a major PM source in Central Europe 

and the Baltic region, while EMEP and LOTOS-EUROS suggest a mix of agriculture or 

industry to be dominant in parts of Germany and Benelux. Agricultural emissions 

contribute to PM formation through complex nonlinear chemistry, leading to larger 

variability across source attribution methods, especially on shorter time scales. On a 

yearly average method induced differences are in the same order as CTM induced 

differences for secondary PM. Evaluation with PMF is hindered by the inability of PMF 

to resolve this source, and its inclusion in broader secondary PMF profiles. 

● Traffic: Identified as the major PM source only in Bern, Zürich, and Munich, and 

exclusively by brute force methods with 15% emission reductions. While for these cities 

most effective small emission reductions are thus linked to the traffic sector, tagging 

and surrogate models using 100% reductions identified other sources to have larger 

contributions, highlighting the different purposes and complementarity of the methods. 
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The CTM and PMF approaches are having difficulty in representing this highly spatially 

and temporally variable source, in a time consistent way. CTMs generally 

underestimate PMF traffic contributions, likely due to the model resolution, issues in 

spatial attribution of emissions and mixing of multiple sources in the PMF traffic profile.  

Notably, PMF identified traffic-related resuspension not included in the CTMs, a gap 

being addressed by the CAMAERA project through the development of gridded non-

exhaust emission inventories. 

● Industry: Dominant in several German and Iberian cities in EMEP and LOTOS-

EUROS results, with differences between CTMs driven by emission injection heights 

and differences between attribution methods by secondary aerosol formation. 

Evaluation is challenging due to the low number of sites identifying an industrial source 

profile and the variety of industrial sources and composition of their emissions. 

● Shipping: Significant around Mediterranean ports and shipping lanes, with model 

discrepancies influenced by emission altitude and atmospheric mixing. Evaluation with 

PMF is hampered due to the limited number of stations providing a heavy fuel oil PMF 

source, although this source can often decently be captured by tracers as nickel / 

vanadium.  

● Natural Sources: Identified by the EMEP model as the main contributor to daily PM2.5 

above 50 µg/m³. These sources are relevant in relation to the subtraction of its 

contributions for EU PM exceedance reporting. While these primary PM contributions 

show no differences between attribution methods, significant variation exists between 

CTMs. Comparison with PMF data confirms an overestimation of sea salt by LOTOS-

EUROS, while EMEP is showing a positive bias for dust in Athens.  

● Overall the source attribution results from EMEP and LOTOS-EUROS are providing 

the same major source for more than 75% of the cities, although LOTOS-EUROS 

identifies a greater number of cities where primary pollutants are the dominant 

component. There is less consistency in the main source sector and component 

between CHIMERE’s surrogate model results and those from the other models, 

probably related to the large interaction terms determined by its surrogate model. 

Methodological Insights: 

● CAMS currently provides geographical and sectoral source attribution through separate 

products based on different methods: brute force and surrogate model for estimating 

emission reduction impacts and tagging for source contributions. Combining model 

outputs into a mini-ensemble is methodologically sound for assessing annual and 

primary PM but secondary PM attribution and total PM attribution on shorter timescales 

requires method-specific approaches used in a complementary way. 

● The local fraction method is demonstrated to be an efficient substitute for brute force in 

EMEP, with minimal differences. 

● Comparing model results to Positive Matrix Factorisation (PMF) data is complex due to 

differences in each PMF dataset characteristics and difficulty in isolating sources 

requiring thorough analysis of the PMF profiles to identify its potential match with CTM 

sources. Its inclusion in operational CAMS evaluation processes is furthermore 

hampered by delays in availability of PMF data. Alternatives like near real-time source 
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specific elemental carbon or organic aerosol observations and tracer monitoring may 

be more suitable for this. 

● Possible evaluations with PMF data can benefit from a further separation of GNFR 

sectors into sub sectors within the CTM models. 

Recommendations: 

● Provide complementary source attribution methods to leverage their strengths (e.g. the 

provision of more detailed information from subsectoral contributions by tagging 

approach)  in CAMS policy support service.  

● Refine spatial allocation of residential biomass emissions (and other sources) to better 

represent local practices. 

● Consider a redistribution of the interaction terms from the surrogate model (and BF and 
LF) avoiding interpretation difficulties by users and improving representation of actual 
agriculture and other sectoral contributions influenced by non-linear chemistry. 

● Develop urban source attribution modelling tools by combining the regional background 
information with source attribution from local models with increased resolution and 
more detailed local traffic emissions information, including non-exhaust sources for 
better attribution of the local traffic contributions. 

● Evaluation of the CAMS policy support products with PMF is only recommended for 

PMF profiles with clear tracer species, i.e. residential biomass combustion, sea salt and 

to some extent dust and shipping profiles. 

● Consider how to effectively communicate to policymakers the potential uncertainties 

and differences in source attribution results arising from the choice of CTM and source 

attribution method. 
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2 Introduction 

2.1 Background 

Monitoring the composition of the atmosphere is a key objective of the European Union’s 
flagship Space programme Copernicus, with the Copernicus Atmosphere Monitoring Service 
(CAMS) providing free and continuous data and information on atmospheric composition.  

The CAMS Service EvOlution (CAMEO) project is aimed at enhancing the quality and 
efficiency of the CAMS service and help CAMS to better respond to policy needs such as air 
pollution and greenhouse gases monitoring, the fulfilment of sustainable development goals, 
and sustainable and clean energy. This includes preparation of CAMS for the uptake of 
forthcoming satellite data, including Sentinel-4, -5 and 3MI, advancing the aerosol and trace 
gas data assimilation methods and inversion capacity of the global and regional CAMS 
production systems. In addition CAMEO develops methods to provide uncertainty information 
about CAMS products, in particular for emissions, policy, solar radiation and deposition 
products in response to prominent requests from current CAMS users. With this work CAMEO 
will contribute to the medium- to long-term evolution of the CAMS production systems and 
products. 

The transfer of developments from CAMEO into subsequent improvements of CAMS 
operational service elements is a main driver for the project and is the main pathway to impact 
for CAMEO. The CAMEO consortium, led by ECMWF, the entity entrusted to operate CAMS, 
includes several CAMS partners thus allowing CAMEO developments to be carried out directly 
within the CAMS production systems and facilitating the transition of CAMEO results to future 
upgrades of the CAMS service. This will maximise the impact and outcomes of CAMEO as it 
can make full use of the existing CAMS infrastructure for data sharing, data delivery and 
communication, thus supporting policymakers, business and citizens with enhanced 
atmospheric environmental information. 

Workpackage 6 of CAMEO is dedicated to the investigation of uncertainties in the CAMS policy 
products and CAMS global forecasts and analyses. 

 

2.2 Scope of this deliverable 

2.2.1 Objectives of this deliverable 

The first objective of this deliverable is to evaluate the consistency and comparability of 
modelled particulate matter (PM) source sector contributions from the different modelling 
systems applied within the CAMS policy service. Here we will disentangle differences due to 
the use of distinct chemical transport models and differences due to the use of various source 
attribution methods. 

The second objective of this deliverable is to evaluate the modelled PM source sector 
contributions with observational based source attribution using Positive Matrix Factorisation 
(PMF) and specific source tracers such as levoglucosan (wood combustion). 

2.2.2 Work performed in this deliverable 

In this deliverable the work as planned in the Description of Action (DoA, WP6 T6.3.1 and 
6.3.2) was performed. 

2.2.3 Deviations and countermeasures 

In this work package, a 5 years run (2015-2019) with LOTOS-EUROS was originally proposed 
to compare with the PMF data. This has been reduced to a two-year LOTOS-EUROS run for 
2018-2019, while the one year EMEP run has been extended to two years. Analysis of the 
available PMF datasets performed in Task 6.3.1 and beyond, showed that extending the 
analysis with the years 2015-2017 would enable the comparison to 6 additional PMF datasets. 
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The majority of these sets include locations for which we also have data for 2018-2019 and/or 
for which comparisons have been performed and published in other projects. An extension to 
the years 2015-2017 was therefore not expected to provide new or additional insights. 

The decision was made to limit the LOTOS-EUROS model run to 2018-2019 and replace this 
effort with extended comparisons for 2018-2019, including feedback sessions with several 
PMF data providers. 

This deviation from the original proposal does not impact the project ambitions on evaluation 
of CAMS source attribution results and differences, nor will it impact any other tasks in the 
project since there are no tasks dependent on this deliverable.  

 

2.2.4 CAMEO Project Partners: 

ECMWF EUROPEAN CENTRE FOR MEDIUM-RANGE WEATHER FORECASTS 

Met Norway METEOROLOGISK INSTITUTT 

BSC BARCELONA SUPERCOMPUTING CENTER-CENTRO NACIONAL DE 
SUPERCOMPUTACION 

KNMI KONINKLIJK NEDERLANDS METEOROLOGISCH INSTITUUT-KNMi 

SMHI SVERIGES METEOROLOGISKA OCH HYDROLOGISKA INSTITUT 

BIRA-IASB INSTITUT ROYAL D'AERONOMIE SPATIALEDE 

BELGIQUE 

HYGEOS HYGEOS SARL 

FMI ILMATIETEEN LAITOS 

DLR DEUTSCHES ZENTRUM FUR LUFT - UND RAUMFAHRT EV 

ARMINES ASSOCIATION POUR LA RECHERCHE ET LE DEVELOPPEMENT DES 
METHODES ET PROCESSUS INDUSTRIELS 

CNRS CENTRE NATIONAL DE LA RECHERCHE SCIENTIFIQUE CNRS 

GRASP-SAS GENERALIZED RETRIEVAL OF ATMOSPHERE AND SURFACE PROPERTIES 
EN ABREGE GRASP 

CU UNIVERZITA KARLOVA 

CEA COMMISSARIAT A L ENERGIE ATOMIQUE ET AUX ENERGIES ALTERNATIVES 

MF METEO-FRANCE 

TNO NEDERLANDSE ORGANISATIE VOOR TOEGEPAST 
NATUURWETENSCHAPPELIJK ONDERZOEK TNO 

INERIS INSTITUT NATIONAL DE L ENVIRONNEMENT INDUSTRIEL ET DES RISQUES - 
INERIS 

IOS-PIB INSTYTUT OCHRONY SRODOWISKA - PANSTWOWY INSTYTUT BADAWCZY 

FZJ FORSCHUNGSZENTRUM JULICH GMBH 

AU AARHUS UNIVERSITET 

ENEA AGENZIA NAZIONALE PER LE NUOVE TECNOLOGIE, L'ENERGIA E LO 
SVILUPPO ECONOMICO SOSTENIBILE 
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3 Evaluation of source sector attribution products  

3.1 Introduction 

CAMS currently offers a number of products to support decision and policy makers with regard 
to mitigation of air pollution at the European scale (https://policy.atmosphere.copernicus.eu/). 
These policy products provide information about the causes and main drivers of air pollution, 
the so-called source receptor relationships (SR), and their potential evolution in the future.  

Quantitative uncertainty information is needed if the products are to be used by policy makers 
to prioritise measures in different activity sectors and to gauge the scale of actions that must 
be targeted when designing air quality policies with short or long term perspectives.  

However, a direct comparison of modelled source contributions from chemistry transport 
models (CTMs) with observations is not possible in a similar way as performed for modelled 
pollutant concentrations. Yet there are several studies providing PM source sector attribution 
information based on PM composition observations or alternatively specific source sector 
tracers such as levoglucosan for wood burning can be used to evaluate the modelled variability 
of this source. Chapter 6 presents the evaluation of the CTM source contributions with 
observational based data and discusses the challenges of such comparisons and possible 
directions for implementation in the CAMS policy service.  

In the current CAMS policy service, 3 regional chemistry transport models perform source 
attribution calculations with different methods (answering different questions) that yield 
different results for species formed through non-linear atmospheric chemistry. To support 
policy makers, it is crucial to understand the consistency and comparability of the three 
systems, and to understand where differences are coming from. Are they due to the use of a 
different CTM or a different source attribution method? To this end a set of experiments has 
been performed with the three CAMS policy support models using a set of different source 
attribution methods (see Figure 3-1). The results and conclusions from the comparison of these 
model experiments are described in Chapter 5.  

 

Figure 3-1 The chemistry transport models and their source attribution methods as applied in 
this study. ER= emission reduction. 

3.2 Chemistry transport models and their source attribution methods 

Below we describe the three chemistry transport models and their source attribution methods 
applied within this work. 

3.2.1 EMEP model  

Within the CAMS policy support service the EMEP model (Simpson et al., 2012) is providing 
Country-to-city SR and city-to-city SR using a brute force (BF) methodology (i.e. reducing 
emissions (ER) of NOx, SOx, NH3, VOC, PPM by 15% (at the same time) for countries and 
cities and scaling the effect up to 100%). This method gives the effect of emission reductions 
(potential impacts, e.g. (Clappier, A. et al., 2022) for instance: What happens to PM if you 
reduce NH3? Note that in principle the result could be zero (at some specific places) when NH3 
is in excess of H2SO4 and no HNO3 is available for formation of NH4NO3. This method can also 
give negative contributions, as a result of non linear chemistry, for instance a reduction of NOx 
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in a city might lead to increased ozone due to the titration of ozone by NOx during the nights. 
Within the work presented here the brute force methodology is applied to emission source 
sectors, although source sectoral attribution by the EMEP model is not part of the current 
CAMS policy service. 

In addition, a new method for calculating source receptor relationships has been developed at 
MET Norway - the local fraction (LF) methodology, also referred to as sensitivities (Wind et al., 
2020; Wind & van Caspel, 2025).The LF method can be considered similar to a brute force 
methodology - but the emission reductions are very small (It calculates the derivative of the 
concentration with respect to an emission change (dC/dE) at the current concentration). 
Leveraging on the experience with the LF method within the work of the CAMEO project, it is 
planned for the near future to use the LF method within the CAMS policy user service, and 
therefore we include this method in our analysis. 

3.2.2 LOTOS-EUROS model  

The LOTOS-EUROS model is a chemistry transport model developed by TNO and used with 
the CAMS regional forecasts and analysis service and the CAMS policy service (for more 
information we refer to (Manders et al., 2016).  

Within the CAMS policy support service LOTOS-EUROS is applied for the attribution of PM 
concentrations to countries using a tagging method (Kranenburg et al., 2013). This method 
has been developed to trace the origins of pollution, throughout all the processes in the model, 
thereby providing the contributions at any place and time under the actual conditions. By 
definition the method never yields negative contributions.  

In the tagging method, the nitrogen and the sulphur atoms are tagged and followed in the 
formation of NH4NO3 and ammonium sulphate, (NH4)2SO4. The formed secondary PM is 
attributed equally to the source of ammonium and the source of nitrate/sulphate respectively. 
When looking at speciated source attribution results ammonium would initially only have an 
agricultural contribution and nitrate would only be assigned to e.g. the traffic source. In this 
case we redistribute the sources of ammonium and nitrate, which are present in the form of 
NH4NO3, by averaging the fraction of sources from both species. With this redistribution, the 
nitrate has some contribution from agriculture due to formation of NH4NO3. Coarse nitrate 
formed from the reaction with sea salt is not handled this way and does not have any 
contribution from agriculture. 

The model in this study is applied for source sector attribution calculations with this tagging 
method and additional experiments using the brute force (BF) method with 15% sectoral 
emission reductions (also referred to sensitivity calculations) and scaling the effect up to 100% 
have been performed to align with the EMEP brute force calculations. 

Moreover, a surrogate model with the same set-up and settings as the CHIMERE ACT tool 
was trained and source sector apportionment results were obtained with both 15% and 100% 
emission reduction similar to the ACT tool and its sectors. 

3.2.3 CHIMERE model  

Within the CAMS policy service the CHIMERE model (Couvidat et al., 2025) is used for Sector-
to-city contributions with the ACT tool which contains a parametrized concentration-emission 
response function updated on a hourly/daily basis. The parameterization is based on a set of 
brute force runs with different combinations of reductions in the different sectors (Colette et al., 
2022). The sector contribution is normally based on 100% emission reductions (ER), but in this 
experiment also the 15% ER are considered for comparison to the other methods. The ACT 
surrogate model (SM) was demonstrated to be within 2% of sensitivity simulations with the full 
CTM CHIMERE even for secondary species (such as nitrate, sulfate, ammonium, secondary 
organic aerosols or ozone) for which strong chemical non-linearities occur. 
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3.3 Modelling setup  

To be able to investigate differences due to the use of different source attribution methods we 
have to a large extent harmonised the set-up of all three models (see Table 3-1) in terms of 
inputs (emissions, meteorology, boundaries) and setup (resolution and domain). Note that 
while the emissions are harmonised the vertical emission profiles differ between the models.  

The models with source attribution methods have been run for the year 2019. EMEP (with BF) 
and LOTOS-EUROS (with tagging) have additionally been run for the year 2018 for comparison 
with PMF data (see chapter 5) . 

The source attribution has been performed for the set of sources presented in Table 3-2. For 
LOTOS-EUROS and EMEP some GNFR sectors have been split into subsectors to allow a 
better matching with the identified PMF factors.  

The modelled contributions have been derived for 79 out of the 80 cities included in the CAMS 
policy service (London is excluded here because of the city mask not being available in the 
Urban Audit 20211). 
 

Table 3-1. Overview of models set up for this study.  

 EMEP  LOTOS-EUROS  CHIMERE  

Forest fires GFAS v1.2 

Soil NOx CAMS-GLOB-SOIL 
v2.3 

(Novak & Pierce, 
1993) 

MEGAN V2.10 
(Guenther et al., 
2012)  

Model resolution  0.2x0.1 

Surface layer thickness 50m 20m ~16m 

Domain lon: -24.9 to 44.9 by 0.2 degrees east 
lat : 30.05 to 71.95 by 0.1 degrees north 

Emission resolution 0.1x0.05 

Emission version CAMS-REG v6.1 , and associated fuel splits for sectors 

Emission time factors CAMS TEMPO v4.1(Guevara et al., 2021) , heating degree days for 
residential wood combustion 

City definitions city masks and area weights corresponding to city-cores, as defined 
on the Urban Audit 20212. 

Initial conditions Two weeks spinup starting from 3d interpolated IFS-COMPO 
(Flemming et al., 2015; Rémy et al., 2019): IFS45r1 

Boundary conditions IFS45r1 data for all species made available for the CAMS regional 
validated reanalysis 

Species (focused on in this 
study) 

PM2.5, PM10, PM components 

LE surrogate model results only provides PM2.5, PM10 

 

 
1 https://gisco-services.ec.europa.eu/distribution/v2/urau/urau-2021-metadata.pdf 
2 https://gisco-services.ec.europa.eu/distribution/v2/urau/urau-2021-metadata.pdf 
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Table 3-2 Overview of source sectors based on GNFR subsectors identified within the different 
source attribution methods  

GNFR (sub) sectors LF/BF/Tagging Surrogate models  

A_PublicPower Power Plant Biomass 

Power Plant Other 

Industry  

B_Industry Industry Biomass 

Industry Combustion 

Industry Other Combustion 

C_OtherStationary Comb 
(residential only) 

Residential Biomass 

Residential Other 

Residential 

D_Fugitive; E_Solvent; 
I_Offroad; H_Aviation; J_Waste; 
M_other 

Other Sectors Other 

K_agriculture  Agriculture  Agriculture 

F1/2/3_RoadTransport _exhaust Traffic Exhaust Traffic  

F4_RoadTransport _nonexhaust TraffIc Non-exhaust 

G_Shipping  Shipping  Shipping 

NA Natural  NA 

NA Fire  

NA Boundary & Initial Condition 
(BIC) 

 

Note that boundary conditions for ozone and natural sources are not reduced in the BF 

simulations, while the boundary conditions of other species (such as SO4, BC, OA) have 

been reduced. Contributions are therefore taken from a base run in LOTOS-EUROS and in 

EMEP the dust and seasalt from boundary conditions are labelled and outputted directly. 

 

3.4 Positive matrix factorization 

Positive matrix factorization is a source apportionment technique that uses measured species 
concentrations to identify an optimal number of factor profiles. It does so by statistically 
evaluating the optimal number of source profiles through multiple diagnostic tools. These 
include goodness-of-fit (Q-values) metrics, residual analysis and uncertainty estimations, while 
also taking into account chemical fingerprints of the identified profiles. It relies on the temporal 
correlation of chemical species, which allows it to identify PM profiles (Brown et al., 2015; 
Norris & Duval, 2014; Paatero & Tapper, 1994). 

PMF output is sensitive to the selection of species used as input data, especially the inclusion 
or exclusion of so called tracer species and subsequently the uncertainty assigned to each 
species concentration. Moreover, while there are guidelines available, differences in settings 
used within the PMF software (e.g. constraints settings, Signal-Noise ratio, excluding species 
outliers) can influence profile identification.  

Altogether it shows that interpretation of the identified profiles and estimated daily source 
concentrations of PMF depend on numerous study-specific factors. To make sure that 
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comparisons between CTM sources and PMF studies were conducted properly, close contact 
with data providers was maintained to interpret PMF profiles and the comparisons performed 
here.  

In Section 5, we will dive deeper into the interpretability of PMF profiles across studies, where 
we will discuss the quality of the PMF analysis and the impact on the matching. For now, an 
initial overview of the matches between PMF and CTMs are provided for each major source at 
the beginning of each subsection focusing on that source. 

3.4.1 European PMF datasets 

An overview of PMF studies on either PM2.5 or PM10 chemical compositions in Europe was 
compiled through multiple sources: starting from PMF studies mentioned in existing reviews 
such as (Hopke et al., 2020), using search engines (e.g. Scopus) to search for European PMF 
studies published from 2015 onwards in Scopus, previous or currently running EU projects 
(e.g. RI-Urbans, Life-Remy) and personal contacts with scientific groups.   

This overview served as a basis to select a focus year to run the models for the PMF-CTM 
comparisons. While the number of studies is quite extensive in the years of 2013-2017, a 
substantial proportion of these PMF datasets were already compared against CTM source 
contributions in France and Germany in previous work (Pekel et al., 2025; Timmermans et al., 
2022; Vida et al., 2025; Weber et al., 2019). We therefore decided to focus on another time 
period. We have contacted the research groups which had performed PMF analysis for 2017 
onwards, either published or not, and made a data request. Based on the data availability of 
these requests it was decided to focus the model comparisons on the year of 2019, for which 
all three CTMs provided data. 

After receiving additional PMF data, the study period was extended to include 2018 to increase 
the number of stations that can be incorporated, and extend some of the datasets which were 
available for 2018 and 2019. In Table 3-3 an overview is provided of all PMF studies that were 
used for the comparison between PMF and CTM source contributions in this task, while 
appendix E provides an overview of the data providers for each station. Of note, the dataset 
from the Milan Pascal station was provided for the exercise with the understanding that the 
results would not yet be included in this report, as the data providers intend to first publish the 
accompanying results in a paper. Moreover, as elaborately discussed in source apportionment 
literature, the methods used for the different studies with regards to sampling, included 
components, PMF settings and subsequently solution criteria can have a large effect on the 
expected outcome (Amato et al., 2024; Borlaza et al., 2022; Brown et al., 2015; Mooibroek et 
al., 2022; Norris & Duval, 2014; Weber et al., 2019). We therefore consulted each PMF provider 
with regards to their study specific details and interpretation of the matching results and refer 
to the accompanying studies (Appendix E).  

The study set up of the three Dutch stations requires some additional attention, worth 
elaborating upon. Some of the compositional data from Mooibroek et al. (2022) are derived 
from pooled daily samples. Filters were sampled every other day, and typically, four daily filters 
are combined for analysis, thereby resembling a resolution of approx. one week. Subsequently, 
the pooled data underwent multiple steps (e.g. detection limit determination, re-pooling data 
and imputation missing data) to come to a 24-hour average concentration for these species 
before used in the PMF analysis (see methods - Mooibroek et al. (2022)).  Consequently, the 
dataset experiences some reduced temporal resolution compared to what would be achievable 
with analyses of individual daily samples. In our comparison we used the daily PMF daily 
estimates for these stations, but it is good to keep the underlying pooling of these samples in 
mind. For the other stations and studies samples were derived from daily averaged samples 
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Table 3-3 Overview of PMF datasets used in this study. N = number of observations 

Country Station Start date End date Topology 
N  

(2018) 
N  

(2019) 

Spain 
 

Barcelona (BCN) 03-01-2018 31-03-2019 
Urban 

background 
78 

22 

Montseny (MSY) 03-01-2018 31-03-2019 
Rural 

background 
78 

23 

 Payerne (PAY) 03-06-2018 29-05-2019 Rural 
53 

38 

 Basel-Binningen (BSL) 03-06-2018 29-05-2019 Suburban 
53 

38 

Switzerland Zurich-Kaserne (ZRCH) 03-06-2018 29-05-2019 Urban 
53 

38 

 Bern-Bollwerk  (BERN) 03-06-2018 29-05-2019 Urban - traffic 
53 

38 

 
Magadino-Cadenazzo 

(MGD) 
03-06-2018 29-05-2019 Rural 

53 
38 

 Freiburg (FRB) 01-01-2018 31-12-2018 traffic 
353 

0 

Germany Garttringen (GRT) 01-01-2018 31-12-2019 rural 
353 

365 

 
Stuttgart Bad Cannstatt 

(STG) 
01-01-2018 31-12-2019 urban 

353 
365 

Germany 
 

Melpitz - Research 
station (MLP_RS) 

01-11-2018 31-10-2019 rural 

59 

290 

Melpitz – village 
(MLP_VIL) 

01-11-2018 31-10-2019 rural 
59 

290 

Italy Milan Pascal (MIL) 01-01-2017 31-12-2020 urban 
237 

277 

Greece Athens (ATH) 01-01-2018 27-12-2019 
Urban 

background 
96 

107 

Netherlands 
 

Ijmuiden (IJM) 01-01-2017 31-12-2019 
Industrial / 
residential 

365 
365 

Wijk aan Zee (WAZ) 01-01-2017 31-12-2019 Industrial / urban 
365 

365 

Beverwijk (BVW) 01-01-2017 31-12-2019 Industrial / urban 
365 

365 

 

3.5 Tracer data 

While PMF studies can provide valuable insights, they are relatively scarcely spread out 
throughout Europe, providing only limited possibility to evaluate CTM sources against a PMF 
derived source counterpart. This is especially true for PMF profiles that are not often identified, 
such as shipping. Alternatively data on the concentrations of specific source sector tracers can 
be used. Comparing CTM source contributions against such source specific sector tracers 
provides insight into the dynamics of the CTM and the species.  

We therefore selected three tracers for which observational data throughout Europe was 
gathered, i.e. levoglucosan, which acts as a tracer for biomass combustion processes, and 
nickel and vanadium related to heavy fuel oil, which is mainly attributed to shipping emissions.  

Observational data was obtained through the EMEP database3 where all datasets containing 
levoglucosan, nickel or vanadium in PM10 samples within the modeling domain for the year of 
2019 were selected. In Appendix D an overview of all the stations, including topology (if 
specified) can be found. The majority of stations providing observations on either one of the 
three tracers were sampling either a daily or weekly average concentration and contained a 

 
3 https://ebas-data.nilu.no/ 
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high number of below detection limit (DL) values, which are not excluded from the 
comparisons.  

Only one station was identified for levoglucosan in 2019, but for nickel and vanadium multiple 
stations provided observational data worth comparing to the CTM output.  

3.6 Comparability of models and methods 

3.6.1 Source attribution methods 

Designed for different purposes, tagging and BF based methods will not lead to the same 
source attribution results in case of non-linear relationship between emissions and 
concentrations (Thunis et al., 2020; Thürkow et al., 2023). Clappier et al., (2017) with 
theoretical examples for PM show how in case of non-linearities and either limited or non-
limited chemical regimes the different methods can lead to significantly different results. Belis 
et al., (2021) followed up on this study by investigating the impact of non-linearities for the 
source attribution of PM in a real case model application over the Po Valley in Italy. They 
identified that in many situations the tagging and brute force methods provide comparable 
results when analysing annual source contributions. Largest differences between methods 
were associated with contributions from the agricultural sector and the interaction of this source 
with road transport and to a lesser extent with industry to form secondary PM. The differences 
become more prominent when focusing on shorter timescales (e.g. daily averages or episodes 
of a few days). Additionally they found that the non-linearity was most relevant for large 
emission reductions connected to changes in chemical regimes. In the case of 100% emission 
reductions the differences with the tagging method could reach a factor of 2 for the agricultural 
source contributions. For smaller 20% and 50% emission reductions these differences were 
considerably smaller, but showed scattered results indicating spatial heterogeneity. 

Since the surrogate modelling is representing brute force emission reduction impacts, similar 
differences can be expected between the surrogate modelling taking 15% ER and brute force 
runs with 15% ER. Because of the non-linearity the surrogate model results with 100% ER are 
however not comparable to the BF with 15% ER used in this study, but should be similar to BF 
results with 100% ER.  

The local fraction method is also providing a potential impact of emission reduction albeit as a 
derivative of actual emissions. Therefore this method should be comparable to a brute force 
method with very small emission change. 

In principle, the methods of tagging, BF, surrogate modelling, and LF should yield equivalent 
results for primary species that are directly emitted into the atmosphere, do not undergo 
chemical transformations and therefore vary linearly with respect to emission strengths. 
However, in practice, minor discrepancies may emerge. For instance, the LF and BF methods 
exhibit slight variations due to the concentration dependent advection scheme (Wind et al. 
2024).  

Due to the fewer number of sectors in the SM, sectors from other methods were combined for 
comparison with the SM results, based on Table 3-2. For tagging, contributions from sub-
sectors are inherently additive and can be combined to get the contributions from the broader 
sectors, as the ones evaluated by the surrogate models. Contributions from the BF and LF 
methods may not be additive, and adding them up will not produce identical results as a BF 
method on the broad sectors. Nevertheless, the comparison between the SM and other 
methods can provide an insightful perspective for the users of the policy product to evaluate 
and understand the differences derived from different methods. 
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3.6.2 CTM models  

Differences in source attribution results can also arise from differences in the model 
formulations themselves (for instance in chemistry, natural emissions, deposition and/or 
advection schemes, etc) and in the setup of models (for instance the use of different emissions 
altitudes, surface layer thickness (which is 20m in LE versus 50m in EMEP), etc).  

Furthermore LE has only included secondary inorganic aerosols (SIA) in this experiment. Both 
CHIMERE and EMEP have also included secondary organic aerosols (SOA) in addition to SIA.  

3.6.3 CTM and PMF 

Comparing PMF-derived source contributions to those estimated by chemical transport models 
(CTMs) can potentially be a strong approach for both paradigms to learn from one another. 
While CTMs are based on emissions inventories, atmospheric chemistry, and transport 
processes, PMF provides (daily) temporal source contributions for a number of source 
factors/profiles identified by the chemical composition of a source. Comparing PMF outputs 
against CTM estimates helps check the consistency of both model (CTM and PMF) 
assumptions and improve source characterization. 

While PMF can characterize primary sources based on ambient compositional PM data, it is 
important to take into account some challenges of the technique. The ability of PMF to identify 
certain source profiles is dependent on the chemical species included in the analysis and the 
uncertainty assigned to each species  (Amato et al., 2024). Moreover, due to the PM mixture 
dynamics which PMF uses to identify profiles, it often identifies profiles which primarily are 
made up out of secondary (in)organic aerosols (e.g. Nitrate-rich and Sulfate-rich), making it 
challenging to identify the sources of the gaseous precursors of these PMF factors and match 
against the CTM sectors (Pekel et al., 2025; Timmermans et al., 2020; Vida et al., 2025). 
Similarly, whereas CTMs are able to differentiate between compositional similar sources (e.g. 
incomplete fossil fuel combustion processes) the PMF analysis would aggregate such sources 
into single factors due to the chemical similarities. Only a timing difference in the source 
concentrations is often not sufficient to disentangle sectors with similar profiles. For this, 
specific source unique tracers are required.  

Therefore, it is essential to first establish an understanding of the species used as input data 
for the PMF, uncertainties and profiles across the PMF datasets before their comparison with 
CTM outputs can provide useful insights.  

The matching of the CTM sectors with the PMF factors are provided per source in the 
respective results subsections. Note that the results from tagging which provides actual 
contributions for the specified time and place are the only products which are similar in 
definition to the contributions derived by the receptor modelling PMF data. The other CTM 
source attribution products are actually potential impacts of emissions translated to 100% 
contributions, in case of non-linear chemistry these can be different from actual contributions 
(see also CAMEO deliverable D6.1) and part of the differences between the PMF and CTM 
results can be attributed to this fact. 
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3.7 Statistical indicators for comparisons  

Normalized Mean Bias  

𝑁𝑀𝐵 =  
1

𝑁
∑

(𝑀𝑜𝑑𝑖 − 𝑂𝑏𝑠𝑖)

𝑂𝑏𝑠𝑖

𝑁

𝑖

 

Root Mean Square Error  

𝑅𝑀𝑆𝐸 =  √
1

𝑁
∑(𝑀𝑜𝑑𝑖 − 𝑂𝑏𝑠𝑖)2

𝑁

𝑖

 

Normalized Root Mean Square Error  

𝑁𝑅𝑀𝑆𝐸 =  
√1

𝑁
∑ (𝑀𝑜𝑑𝑖 − 𝑂𝑏𝑠𝑖)2𝑁

𝑖

𝑂𝑏𝑠
 

Temporal correlation with observations   

 

𝑟2 = (
∑(𝐶𝑚𝑜𝑑𝑒𝑙 − 𝐶𝑚𝑜𝑑𝑒𝑙

̅̅ ̅̅ ̅̅ ̅̅ ̅)(𝐶𝑜𝑏𝑠𝑒𝑟𝑣𝑎𝑡𝑖𝑜𝑛 − 𝐶𝑜𝑏𝑠𝑒𝑟𝑣𝑎𝑡𝑖𝑜𝑛)̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅

√∑(𝐶𝑚𝑜𝑑𝑒𝑙 − 𝐶𝑚𝑜𝑑𝑒𝑙
̅̅ ̅̅ ̅̅ ̅̅ ̅)2 ∑(𝐶𝑜𝑏𝑠𝑒𝑟𝑣𝑎𝑡𝑖𝑜𝑛 − 𝐶𝑜𝑏𝑠𝑒𝑟𝑣𝑎𝑡𝑖𝑜𝑛

̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅)2
)

2

 

 

 

Spearman’s ranked correlation coefficient denoted as rs is used to intercompare ranked relative 
contribution results 

𝑟𝑠 =
𝑐𝑜𝑣[𝑅(𝑋𝑚𝑜𝑑𝑒𝑙+𝑚𝑒𝑡ℎ𝑜𝑑),𝑅(𝑌𝑚𝑜𝑑𝑒𝑙+𝑚𝑒𝑡ℎ𝑜𝑑)]

𝜎𝑅(𝑋𝑚𝑜𝑑𝑒𝑙+𝑚𝑒𝑡ℎ𝑜𝑑)𝜎𝑅(𝑌𝑚𝑜𝑑𝑒𝑙+𝑚𝑒𝑡ℎ𝑜𝑑)

  

Where R is rank, 𝜎 is standard deviation, cov is the covariance.  

 

Coefficient of determination  

𝑅2 = 1 −
𝑆𝑆𝑟𝑒𝑠

𝑆𝑆𝑡𝑜𝑡
  

𝑆𝑆𝑡𝑜𝑡is the total sum of squares and 𝑆𝑆𝑟𝑒𝑠 sum of squares of residuals 
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4 Modelled concentrations evaluation 

The modelled surface concentrations from EMEP, LOTOS-EUROS and CHIMERE have been 
evaluated against observations for 2019. The full evaluation with EBAS and EEA stations can 
be found here: https://aeroval-test.met.no/jang/pages/overall/?project=CAMEO 

Figure 4-1 shows the intercomparisons of the CTM models with monthly EBAS surface 
concentrations for PM10, PM2.5, its main chemical components and precursors. All models show 
more or less similar performance for total PM2.5 with small negative biases of 3.5 to 6.5%. For 
PM10, CHIMERE and EMEP show larger underestimations of 34% and 25% respectively, while 
LOTOS-EUROS is close to the observations on the annual average.  

 

 

Figure 4-1 Normalized Mean Bias (NMB) between CHIMERE, LOTOS-EUROS and EMEP compared 
to monthly averaged EBAS observations for PM10, PM2.5 and its main chemical components.  

While the yearly averaged PM2.5 biases are similar between the models the underlying PM 
composition and temporal variation show larger differences. LOTOS-EUROS overall shows 
higher values for the PM components leading to larger overestimations of nitrate (34%), EC 
(43%) and sea salt in PM2.5 (76%), and lower underestimations than the other models for 
sulfate and organic carbon.  

Regarding the sea salt, LOTOS-EUROS has been shown to overestimate the concentrations 
in CAMS exercises before. Research is ongoing to understand the causes and improve the 
performance. It is believed that the deposition over land may be underestimated. Furthermore 
unlike the other two models, LE also has a contribution of sodium from inland industrial sources 
(not shown) which ends up in the sea salt component but not in the natural contributions.  

For primary elemental carbon (EC), which is solely driven by dispersion and deposition, the 
difference between models may, amongst others, be explained by the difference in surface 
layer thickness between the models. The higher primary PM in LOTOS-EUROS may be 
influenced by the treatment of the condensables, i.e. in the applied set-up with disabled SOA 
formation all EC and OC emissions are considered as primary.  

The reason for the similar comparison to PM2.5, despite all chemical components being higher 
in LOTOS-EUROS, is partially related to the inclusion of PM water in the EMEP model results, 
whilst PM2.5 in LOTOS-EUROS and CHIMERE is providing dry aerosol. Including water in the 
modeling of PM10 and PM2.5 in CHIMERE would lead to a better partitioning between PM10 and 
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PM2.5, likely improving the scores, especially for the sea salt component. The reference 
measurement method for EMEP observations is gravimetric where mass is collected on filters 
that are conditioned to relative humidity 50% and the EMEP model calculates associated PM 
water at 50% relative humidity. For the EEA measurements, it is less clear to which extent the 
PM2.5 mass includes water.  

To ensure better comparability between the source contributions from the different models, in 
chapters 5 and 6 the results from the EMEP model encompass only dry aerosol. 

For the secondary aerosol precursors, we see an overestimation of the annual mean surface 
concentration of ozone (O3) for all models, also nitric acid (HNO3) for CHIMERE and LOTOS-
EUROS. Ammonia (NH3) is underestimated with the lowest underestimation seen for LOTOS-
EUROS. The underestimation of sulphate and overestimation of nitrate indicate that the 
models have a bias to produce more ammonium nitrate (NH4NO3) instead of (NH4)2SO4 than 
observed. 
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5 Results - Consistency and comparability of source sector 
contributions between models and source attribution methods 

Note that in the following sections we will for simplicity refer to the source attribution from all 
methods as contributions, even though this nomenclature officially only applies to the tagging 
results. The results from all models in chapters 5 and 6 refer to dry mass PM. 

5.1 Annual source apportionment 

The annual mean PM10 sectoral source apportionment for eight cities is shown in Figure 5-1. 
The “rest” category in grey is the net difference between the modelled surface concentration 
and the sum of the apportionment from all sources, often referred to as the closure term. This 
term related to the non-linearity in chemistry can be both positive as well as negative (in the 
latter case the source contributions add up to more than the actual concentrations). The 
tagging method, by definition, determines the source contributions and thus does not have a 
residual term. For the EMEP model, only dust and sea salt from BIC's was included. However, 
previous experience with the EMEP model has shown that on an annual basis contributions 
from PM from BICs are very small. The results for PM2.5 are presented in Figure A-1. It should 
be noted that due to the tagging set-up for PM2.5 the BIC category for LOTOS-EUROS tagging 
includes the natural contributions coming in through the model boundaries while for the BF 
these are included in the natural contribution, thereby leading to considerable differences for 
the BIC and natural contributions from these two model/methods. Similarly the rest term for the 
LOTOS-EUROS surrogate model includes also the BIC contributions.  

When focusing on the four methods applied within the LOTOS-EUROS model we see that in 
general for annual average PM the different methods provide similar results.  

The source apportionment results show larger discrepancies between the models. Chapter 4 
already showed that LOTOS-EUROS simulated the highest sea salt concentrations, causing 
differences in the “Natural” category. With respect to the source apportionment of 
anthropogenic sources, the CHIMERE model attributes a larger fraction of anthropogenic PM2.5 
to agricultural emissions than the other models, making this the main source in e.g. Berlin and 
Rotterdam. In Milan and Rotterdam the impact of non-linear processes on the results becomes 
clear when comparing the CHIMERE or LOTOS-EUROS surrogate model results for 15% and 
100% emission reduction: especially for agriculture, the difference in calculated source 
contribution for different emission reductions is large. In contrast, the industrial contributions in 
the CHIMERE results are smaller than in the other two models. In nearly all cities, both the 
EMEP and LE models attribute the largest share to the residential sectors, with LOTOS-
EUROS in general showing higher contributions than EMEP for cities with large biomass 
combustion shares.  
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Figure 5-1 Absolute (µg/m3, left plots) and relative source sector contributions (%, right plots) to 
dry mass PM10 in Athens, Barcelona, Berlin, Milan, Paris, Oslo, Rotterdam and Warsaw from 
CHIMERE (CHIM), EMEP and LOTOS-EUROS (LE) model using either Brute Force method (_bf), 
Local Fractions (_lf), Tagging (_ts) or Surrogate Modelling with either 15% (_sm15) or 100% 
(_sm100) emission reductions scenarios. Sector categories refer to Table 3-2. 
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When investigating the model differences for the residential sector we found that these are 
mainly coming from the primary components as can be seen in Figure 5-2 for Milan. While the 
different source apportionment methods within one model provide the same results due to the 
linear response of primary PM to emissions, the results between the three models differ even 
if the same source apportionment method is applied. This difference can be largely attributed 
to the surface layer thickness, which is 50 m for EMEP, 20 m for LOTOS-EUROS, and ~16 m 
for CHIMERE. A test experiment for January 2019 with double surface layer depth in LE shows 
reductions up to 30-50% in modelled PM and primary PM (Figures B-1 and B-2 in appendix 
B). The lower concentrations are the result of direct dilution of the emissions into a larger 
volume, especially in a shallow stable boundary layer in winter. This effect is most prominent 
in places with highly variable orography such as the Po Valley and Oslo. With smooth 
orography, vertical transport is more efficient in mixing and diluting the emission.  

This reduced dilution is affecting all sources emitting at the surface therefore the relative 
contributions (Figure 5-1) show much better agreement between the different models.  

 

Figure 5-2 Source sector contributions (in µg/m3) to primary PM components: Elemental Carbon 
(EC), Primary Organic Matter (POM) and Rest Primary PM (RESTPPM) in Milan. Note that LE_sm 
and EMEP_lf did not deliver speciated primary PM results, but these are almost identical to the 
primary results from other LE and EMEP methods respectively.  

In some cities a difference between the models is also seen in the industrial contributions which 
may be attributed to the use of different emission altitudes. LOTOS-EUROS inserted the 
emissions from industrial area sources (not to be confused with the point sources) into the 
surface layer leading to higher concentrations than in the EMEP and CHIMERE model which 
applies an emission profile for area industrial sources which is similar to the one used for 
industrial point sources. Difference between the models can also be due to the use of different 
numerical advection and deposition schemes in the three CTMs.  

For the secondary PM species non-linear chemistry plays a role, leading to differences 
between the different source attribution methods applied within the same model (Figure 5-3). 
For Berlin and Rotterdam, higher contributions from the CHIMERE model are again apparent, 
related to the large interaction between sectors, represented by the negative residual term, 
especially in the case of 100% emission reductions in the surrogate model. Such high residual 
terms are likely due to strong non-linearities when reaching large reductions. In Rotterdam all 
source contributions in CHIMERE are higher than for the other models. A redistribution of the 
residual interaction term among these sources could reduce these contributions. The relative 
contributions are very similar though, except for the CHIMERE surrogate model results for 
100% reductions, which are higher for agriculture.  
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Figure 5-3 Absolute (in µg/m3) and relative source sector contributions (in %) to secondary PM 
components: in Berlin (top two panels) and Rotterdam (bottom two panels).  
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This may be explained by the formation of ammonium nitrate (NH4NO3) and ammonium sulfate 
(NH4SO4) aerosols from the reaction of ammonia (NH3) (mostly from agricultural emissions) 
with HNO3 that is produced from NOx sources such as traffic and industry and H2SO4 produced 
from SOx sources such as shipping and industry. While a 100% ammonia emission reduction 
in the agricultural sector will remove its entire contribution to ammonium nitrate and sulfate, a 
smaller emission reduction will be impacted by the availability of HNO3, and H2SO4 and the 
balance between the ammonium sulfate and nitrate production processes (see also CAMEO 
D6.1 where this is described in more detail). 

There is also a difference in the sulphate contributions from LF and BF within the EMEP model. 
The Local Fraction method does not attribute SO4 concentrations in the cities to agriculture 
emissions unlike BF. As there are almost no SO2 emissions from agriculture, this contribution 
in the BF stems from the indirect effect on SO4 when you reduce ammonia emissions, which 
is not yet implemented in the LF method. In the EMEP model, SO4 is assumed to be formed 
from SO2 via reactions with OH, O3 and H2O2. It then enters into equilibrium reactions with NH3, 
HNO3 etc, but that does not affect the amount of SO4. However, there are some indirect effects 
of reducing NH3 emissions. When NH3 is reduced, dry deposition of SO2 is increased (and thus 
SO4 decreased), as there is a parameterization for co-deposition in the EMEP model where 
the SO2 dry deposition velocity depends on the NH3/SO2 ratio. 

The most dominant sectors and pollutants from the different models/methods are shown in 
Figure 5-4. All models and methods agree on the Residential emission of primary pollutants as 
the major anthropogenic source around the Mediterranean except for some cities influenced 
by volcanic emissions involved in the formation of sulfate aerosols. Note that LOTOS-EUROS 
does not include volcanic emissions. The Residential combustion is also identified as the major 
source in Eastern Europe by LOTOS-EUROS and EMEP while the CHIMERE model with its 
source attribution based on a surrogate model indicates an overall large impact of agriculture 
in a wide area in Central Europe and around the Baltic sea. Since agriculture is mostly 
contributing to ammonium nitrate, nitrate which is heavier than ammonium is the dominant 
species in these regions for the CHIMERE surrogate model (Note that for some cities 
CHIMERE identifies agriculture as the dominant source and POM as the dominant species, 
this is due to the large negative interaction residual term discussed before and/or may also be 
due to the sum of POM from multiple sources exceeding the NO3 from agriculture). On the 
other hand both EMEP and LOTOS-EUROS suggest a mixture of industrial and agricultural 
sources around the Benelux and Germany. The dominant sources from the brute force 
approaches in EMEP and LOTOS-EUROS are very alike but LOTOS-EUROS identifies more 
cities with primary pollutants as dominant species. 
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Figure 5-4 Dominant anthropogenic sectors (colors) to annual PM2.5 surface concentration and 
dominant PM pollutant (shapes) to total PM surface concentration in 79 cities. 

 



 

CAMEO  
 

D6.3  27 

To investigate a bit further the model and method induced differences we have compared the 
annual average contributions from different models and different models in scatter plots.   

The methods show almost identical results for primary species (not shown) as expected from 
a linear response to emission reductions. Small differences between TS and BF in LOTOS-
EUROS still occur primarily due to numerical errors from data compression. For BF versus LF 
in EMEP small differences come from the advection which is flux dependent and therefore 
concentration changes due to the emission reduction in BF runs can result in small differences 
compared to the local fraction and tagging results. 

Figure 5-5 shows the comparison of top three ranked relative anthropogenic contributions 
(natural contributions and contributions coming through the domain boundaries are excluded 
in this comparison due to differences in set-up between the models/methods) to the annual 
PM2.5 due to the use of different source attribution methods within the same model.  

 

  

Figure 5-5 Differences in top 3 anthropogenic source contributions to PM2.5 due to different 
methods in EMEP (left panel, local fraction versus brute force), LOTOS-EUROS (middle panel, 
tagging versus brute force) and CHIMERE (right panel, surrogate model with 15% reduction 
versus 100% reduction). Ranking of sectors is based on their contribution for the method 
displayed on the x-axis and can be a different sector for each city represented as datapoint. First 
ranked contributing sector in red circles, second ranked in blue triangles, and third ranked in 
green diamonds. The ranking excludes natural contributions and contributions from outside the 
model domain due to different settings for these in the models.  

Unlike primary species, aggregated PM2.5 contributions exhibit some variances between the 
source attribution methods. Within EMEP the LF and BF methods show minimal differences 
and the same holds for the BF and TS methods within the LE model. The difference between 
the 15% and 100% emission reduction results from the surrogate model in CHIMERE is larger, 
which is expected from the non-linear responses of the secondary PM to emission changes, 
while other BF sensitivity approaches in EMEP and LE are based on 15% reductions. 

Figure 5-6 shows the differences due to different source attribution methods within the LOTOS-
EUROS model. As indicated above the BF and tagging methods provide similar results albeit 
it that the first ranked anthropogenic source has slightly higher contributions in the tagging 
versus the BF results. The LOTOS-EUROS surrogate model shows little difference with the 
LOTOS-EUROS BF when 15% emission reductions are applied. The RMSE and correlation 
between the 15% and 100% emission reduction results from the surrogate model in LOTOS 
are similar to the ones seen for CHIMERE. 
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Figure 5-6 Differences in top 3 anthropogenic source contributions due to different methods in 
LOTOS-EUROS model. Tagging versus brute force (left panel), surrogate model with 15% 
reduction versus brute force (middle panel) and surrogate model 15% reduction versus 100% 
reduction. Ranking of sectors is based on their contribution for the method displayed on the x-
axis and can be a different sector for each city represented as datapoint. First ranked 
contributing sector in red circles, second ranked in blue triangles, and third ranked in green 
diamonds. The ranking excludes natural contributions and contributions from outside the model 
domain.  

Figure 5-7 shows the differences in source attribution results for annual mean PM2.5 due to the 
different models using the same apportionment method. It is clear that the comparison between 
EMEP and LOTOS-EUROS brute force (RMSE = 6.02; Rs = 0.82) and between CHIMERE 
and LOTOS-EUROS surrogate modelling (RMSE= 9.15 and 8.29, Rs = 0.59 and 0.75 for 15% 
and 100% reductions respectively) is showing larger differences than between the methods 
itself (Fig. 5-6: Tagging versus BF RMSE= 3.71 Rs =0.91 ; SM_15 versus BF RMSE= 2.16; 
Rs=0.96) except for the LOTOS-EUROS surrogate model 15% versus 100% reduction 
(RMSE=5.50; Rs =0.80). The differences between EMEP and LOTOS-EUROS seem to be 
smaller than between CHIMERE and LOTOS-EUROS. A further investigation of the 
implementation of the surrogate model in LOTOS-EUROS in comparison to the original 
implementation in CHIMERE is recommended to rule out implementation artifacts. 

As indicated before, the difference between models is to a large extent attributed to the primary 
species from residential combustion, but also to industrial sources and secondary species from 
agriculture.  
 

   

Figure 5-7 Differences in top 3 source contributions to PM2.5 due to different models. EMEP 
versus LOTOS-EUROS brute force (left panel), CHIMERE versus LOTOS-EUROS surrogate model 
with 15% reduction (middle panel) and CHIMERE versus LOTOS-EUROS surrogate model with 
100% reduction (right panel). Ranking of sectors is based on their contribution for the method 
displayed on the x-axis and can be a different sector for each city represented as datapoint. First 
ranked contributing sector in red circles, second ranked in blue triangles, and third ranked in 
green diamonds. The ranking excludes natural contributions and contributions from outside the 
model domain due to different settings for these in the models.  
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For the non-linear species (e.g. NH4+, NO3-) the difference between the EMEP and LOTOS-

EUROS model (Figure 5-8 right panel) is of the same magnitude as the difference between 
brute force and tagging within the LOTOS-EUROS model (Figure 5-8 left panel). 
 

  

Figure 5-8 Differences in top 3 source contributions to nitrate due to different models, EMEP 
versus LOTOS-EUROS brute force (right panel) or different methods LOTOS-EUROS tagging vs 
BF (left panel). Ranking of sectors is based on their contribution for the method displayed on the 
x-axis and can be a different sector for each city represented as datapoint. First ranked 
contributing sector in red circles, second ranked in blue triangles, and third ranked in green 
diamonds. The ranking excludes natural contributions and contributions from outside the model 
domain due to different settings for these in the models. 

 

Figure 5-9 Differences in top 3 source contributions from the two systems that will be providing 
sector contributions in the CAMS policy service within the next phase of the CAMS policy project. 
CHIMERE surrogate model versus LOTOS-EUROS tagging with either 15% reduction (left panel) 
or 100% reduction (right panel). Ranking of sectors is based on their contribution for the method 
displayed on the x-axis and can be a different sector for each city represented as datapoint. First 
ranked contributing sector in red circles, second ranked in blue triangles, and third ranked in 
green diamonds. The ranking excludes natural contributions and contributions from outside the 
model domain due to different settings for these in the models. 

Within the current CAMS policy service only the CHIMERE surrogate model is providing sector 
attribution. However in the next phase of the CAMS policy support project, the tagging results 
from LOTOS-EUROS will be added as this system can provide more detailed information on 
subsectors Figure 5-9 shows the differences between results from these two systems for 
annual PM2.5. It can be seen that the different systems show substantial disparities. It is 
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therefore crucial to provide clear guidance accompanying the service on the purposes and 
application domains of the methods. It should also be mentioned that these differences are to 
a large extent also because of the different model process descriptions and setup and thereby 
also illustrate uncertainties in derived source attributions.   

5.2 Seasonal variability  

The main dominant source contributions show a strong variability with seasons as can be seen 
in Appendix C for Milan and Berlin respectively. Obviously the residential contributions are 
largest during winter being the dominant sector in cities with large wood combustion emissions. 
However, this is not true for all cities, for Berlin the residential combustion is competing with 
agriculture, industry and traffic sources. Natural contributions are more apparent in spring and 
fall due to the seasonal meteorological variability. 

The seasonal variability in sector contributions is similar in all models.  

5.3 Daily variability 

On daily timescales the variation between the source attribution methods becomes larger, 
especially for sectors involved in non-linear chemistry. Figure 5-10 shows the comparison of 
source attribution results for PM2.5 from the different methods for the residential (biomass), 
agriculture and traffic exhaust sources (while Figure 5-11 shows the comparison of source 
attribution results for PM2.5 from between the different CAMS policy support systems. 
Residential (biomass combustion) contributions to PM are dominated by primary aerosols and 
are therefore very similar for each source attribution method. Furthermore results from another 
project showed that the modeled response of total OA (POA + SOA) to emission changes in 
residential combustion is close to linear in the range from 0-60% emission reductions (Janssen 
et al., 2023) .  On the contrary, agricultural contributions largely consist of secondary aerosols 
influenced by non-linear chemistry and therefore show larger deviations between potential 
impacts from brute force and the contributions from tagging. Similarly the sources providing 
NOx and SOx, such as traffic and industry, used in the formation of secondary aerosols also 
show large scatter between the BF and tagging results. In these sources the scatter is 
somewhat smaller since their contributions have a larger primary aerosol fraction than for 
agriculture. 

The EMEP LF and BF results are generally quite similar, particularly for residential combustion 
emissions (dominated by primary PM), but also for traffic exhaust emissions. Somewhat larger 
variability in the results for agriculture can be attributed to the non-linearity in NH3-HNO3 
gas/aerosol partitioning, as discussed above. Even though both EMEP BF and LF are based 
on emission perturbation method, in LF infinitesimal emission reduction is used compared to 
15% in BF, which in some specific short-term (for hourly/daily concentrations) cases are found 
to yield different results. Furthermore in some cases, BF calculates negative concentrations of 
PM2.5, which is a result of upscaling of a very effective expected PM2.5 decrease resulting from 
15% emission reduction to 100% (for more detailed discussion see CAMEO report D6.1). 

The LOTOS-EUROS surrogate model with 15% emission reduction for many sectors provides 
a close approximation of the LOTOS-EUROS 15% brute force results. For agriculture some 
larger differences can be seen, including some larger negative contributions in the surrogate 
model which are hardly present in the brute force runs. These differences are attributable to 
the different behaviour for lower concentrations of the surrogate model compared to the full 
model from which it is derived. Since the model is trained on a limited number of simulations, 
different behaviours may occur locally-especially in sectors like agriculture, which are 
influenced by the highly non-linear chemistry of ammonium nitrate formation.  
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LOTOS-EUROS Tagging versus LOTOS-EUROS brute force 

  
LOTOS-EUROS Surrogate model 15% versus LOTOS-EUROS brute force 

 
LOTOS-EUROS Surrogate model 100% versus LOTOS-EUROS tagging  

 
EMEP Local fraction versus EMEP brute force 

  
Figure 5-10 Comparison of daily PM2.5 source contributions [µg/m3] for Residential biomass (or 
Residential total for surrogate model) (left panels), Agriculture (middle panels) and Traffic 
exhaust (right panels). In LOTOS-EUROS: BF vs TS (top row), Surrogate Model 15% vs Brute 
Force (second row); Surrogate Model 100% vs Tagging (third row); in EMEP: Local Fraction vs 
Brute Force (bottom row). The colour gradient is the density of datapoints with yellow 
representing highest data density, red representing lower data density. Red line = the 1:1 line. 
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The agricultural contribution from the LOTOS-EUROS surrogate model 100% emission 
reduction is nearly always larger than from tagging which can be explained by the fact that in 
the 100% emission reduction scenario the ammonium nitrate for example will not be formed 
while in the tagging approach the same ammonium nitrate is attributed not only to the 
agricultural source of NH3 but also to the source of HNO3 such as traffic.  

In general the comparisons show that on a daily scale one should be considerate of the 
different purposes of the methods. For the assessment of source contributions to an 
exceedance one should consider tagging approaches, while for planning and evaluating the 
potential impact of policy measures one should consider methods based on impacts of 
emission reductions (BF, LF and surrogate models such as ACT). The methods can be used 
in a complementary way where tagging can be used as an efficient way for tracking many 
source contributions in one run, followed or accompanied by brute force/surrogate/local 
fraction models to identify the impact of emission reductions, potentially focusing on the main 
sources identified by the tagging approach.  

When interpreting the brute force results one should be conscious that identified potential 
impacts for separate sources are not additive, i.e. the joint reduction in two source sectors may 
not lead to a concentration change similar to the sum of the two source contributions identified 
by BF. This is illustrated in Figure 5-12 and Figure 5-13 by showing timeseries of the source 
attribution results from four different methods applied within LOTOS-EUROS for two selected 
cases. The timeseries in these figures demonstrate how non-linearity and interaction between 
sources affects results from different source attribution methods. In the first case during late 
summer in Berlin, the sum of the brute force sector apportionment leads to a larger total 
concentration than the actual modelled concentration for most days and thus a large residual 
term. The largest residual terms are seen (not shown) during spring and fall when NH4NO3 
levels are high (in summer, temperatures are too high to sustain significant ammonium nitrate 
levels).  

This behaviour can be explained through the formation of secondary inorganic aerosols. When 
there is no strong limiting chemical regime, reducing either the agricultural NH3 emissions or 
combustion related NOx emissions will both lower the NH4NO3 levels. By upscaling the impacts 
of both NOx and NH3 emission reductions one is effectively double counting the impact. 
Simultaneous reduction of the respective sources will however not lead to an additive impact, 
and the sum of the contributions calculated separately will therefore be larger than the 
contribution when sources are reduced together. Both SM runs in Berlin showed a similar result 
to the BF method. This is because in this case the 2nd order polynomial equation in the SM can 
effectively capture the non-linear effect resulting from emission reductions, similar to the BF 
simulations. Note that the results from taking the 100% emission reduction from the SM 
approach in Berlin around the 24th of September leads to smaller agricultural contributions than 
taking the 15% emission reduction results (Figure 5-12) due to a combination of the non-
linearity derived from both chemical regime and cloud chemistry.       

For the second case during winter time in Utrecht (Figure 5-13), daylight time is short and skies 
are mostly overcast, therefore lacking strong photochemical reactions. In this case secondary 
aerosol formation is restrained by insufficient hydroxyl radicals and O3. Due to limited oxidation, 
increasing or reducing NOx and SO2 will have limited effect on SIA formation. Hence for the BF 
(and SM at 15% emission reduction) method, the reduction of emission has a low impact on 
aerosol concentrations, despite TS demonstrated significant contributions from Agriculture and 
traffic. 
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LOTOS EUROS Tagging versus EMEP brute force 

  
CHIMERE Surrogate model 15% versus EMEP brute force 

 
CHIMERE Surrogate model 100% versus LOTOS-EUROS tagging  

  
 
Figure 5-11 Comparison of daily PM2.5 source contributions [µg/m3] for Residential biomass (or 
Residential total for surrogate model) (left panels), Agriculture (middle panels) and Traffic 
exhaust (right panels). LOTOS-EUROS TS versus EMEP BF (top row), CHIMERE Surrogate Model 
15% vs EMEP Brute Force (second row); CHIMERE Surrogate Model 100% vs LOTOS-EUROS 
Tagging (third row). The colour gradient is the density of datapoints with yellow representing 
highest data density, red representing lower data density. Red line = the 1:1 line. 
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LOTOS-EUROS tagging    LOTOS-EUROS BF 

 

LOTOS-EUROS SM15    LOTOS-EUROS SM100 

 
Figure 5-12 Case I Berlin: time series of surface PM2.5 contributions [µg/m3] from LE_TS (top left 
panel), BF (top right panel), SM15 (bottom left) and SM100 (bottom right) from 23rd September to 
10th October. Black line denotes the modelled PM2.5 concentration [µg/m3]. 
 

LOTOS-EUROS tagging    LOTOS-EUROS BF 

 

LOTOS-EUROS SM15    LOTOS-EUROS SM100 

 
Figure 5-13 Case II Utrecht: time series of surface PM2.5 contributions [µg/m3] from LE_TS (top 
left panel), BF (top right panel), SM15 (bottom left) and SM100 (bottom right) from LE_TS, BF, SM15 
and SM100 from 15th of January to 5th of February 2019. Black line denotes the modelled PM2.5 
concentration [µg/m3]. 
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5.4 Source attribution of exceedances of limit values 

Within the new air quality directive (EU, 2024) it is stated that the daily PM2.5 concentration 
should not exceed 25 µg/m3 on more than 18 days in the year. It is therefore interesting to 
evaluate the results from the different source apportionment systems for different concentration 
levels. Figure 5-14 shows the contributions from the different model- source attribution 
combinations to distinct concentration bins for all cities combined.  
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Figure 5-14 Relative source contributions [in %] to surface PM2.5 concentrations lower than 10 
µg/m3, between 10-25 µg/m3, between 25-50 µg/m3, and above 50 µg/m3 from EMEP local 

fraction and Brute Force (top row), LOTOS-EUROS Tagging Species and Brute Force (second 
row) , surrogate model with 15 and 100% emission reduction (third row) and CHIMERE 
surrogate model with 15 and 100% emission reduction (bottom row). N on the top of the bars 
represents number of samples  

All models show that the residential sector becomes more relevant with increasing 
concentrations. For CHIMERE and LOTOS-EUROS this sector contributes the most for 
concentrations above the daily limit value. For EMEP this is also the case for the concentrations 
above the limit values except for the highest concentrations above 50 µg/m3 where the model 
attributes most of the concentration to dust intrusions. Note that the sample size for this highest 
concentration bins is much smaller making the results less statistically significant. In the other 
two models the natural contribution becomes smaller when going to higher concentrations. 

Exceedances of PM limit values are often seen in winter when it is cold and the shallow 
boundary layer hinders dilution of air pollution levels to higher altitudes. This coincides with a 
larger heating need and residential combustion emissions, thereby explaining the growing 
residential contributions with concentrations.  
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Categorising the exceedances by cities and occasions, LOTOS-EUROS and CHIMERE have 
most exceedances for Milan (number of exceedance days 68 and 76) and Bergamo (46 and 
37) resulting from residential emissions. Due to the deeper surface layer, EMEP has less 
exceedance days driven by residential emissions (Milan 47 days) but about half of the EMEP 
exceedances occur in cities that are often influenced by dust intrusions (including Valletta (26 
days), Catania and Palermo). LOTOS-EUROS and CHIMERE have overall less natural (dust) 
episodes at the surface level in the Mediterranean region. A comparison of dust contributions 
from all systems specifically for exceedances dominated by dust has not been performed in 
this study but is part of the CAMS2_71 episode reports focusing on dust episodes. There we 
often see variable differences in modelled dust contributions depending on the characteristics 
of the episode (region of emissions, extend and altitude of the dust plume).   

As a consequence of the growing residential contribution, the relative contributions from other 
anthropogenic sectors such as traffic, industry and shipping decreases with concentrations. 
For shipping and industry this may also be related to the fact that part of the emissions may be 
emitted above the shallow boundary layer in the winter.  

Interestingly, the four methods within LOTOS-EUROS show high consistency in relative source 
attribution results.  

  



 

CAMEO  
 

D6.3  38 

6 Results - Evaluation of CTM source attributions with 
observational based source attribution 

The overarching objectives of this comparison are to evaluate the extent to which PMF derived 

sources align across sites with CTM (EMEP, CHIMERE, LOTOS-EUROS) source estimations 

and to quantify any biases or discrepancies between both source attribution approaches. 

The evaluation of these approaches focuses on several aspects: 

- The spatial representation (0.2 by 0.1 degrees) of CTMs for the respective area 

(grid-cell) in comparison to the measurement station. 

- Total PM10 mass contributions of sectors from CTMs compared to total PMF 

factor contributions. 

- Seasonality / temporal profile of sources. 

- Station-specific challenges that may affect PMF or CTM accuracy, due to 

localized meteorological conditions or local sources influencing PMF source 

attribution.  

This work supports the broader goal of improving the CAMS modelling infrastructure by 

integrating observational-based information into the evaluation of source apportionment results 

of the CTM models. 

Unless specifically mentioned the results shown in this section are based on 2019 data only to 

allow comparisons with all three models, in some cases we also present results for 2018-2019 

to ensure broader data coverage, especially for the timeseries plots. However, all statistics 

plots are based on the data points present in 2019. 

6.1 Total concentrations 

Figure 6-1 shows the temporal correlation (R2), Root-Mean Squared Error (RMSE) and bias 
(µg/m3) between the modelled PM10 and observed PM10 at the PMF stations for the year of 
2019.  

In general the models’ bias in Figure 6-1 shows that LOTOS-EUROS either underestimates or 
overestimates PM10 concentrations depending on the station, whereas CHIMERE and EMEP 
tend to underestimate the PM10 concentrations for all stations except for the Spanish stations. 
We will go into more details of these under- and overestimations when we compare the source 
specific contributions.  

The temporal correlations (R2) between the CTM models and PMF profiles vary substantially 
across stations. On average, EMEP shows the strongest agreement with an R2of 0.49 (range: 
0.23–0.74), followed by LOTOS-EUROS (LE) with an average R² of 0.41 (range: 0.14–0.68), 
and CHIMERE with an average R² of 0.38 (range: 0.04–0.64). These values show that, while 
overall model performance is moderate, station-specific factors strongly influence the quality 
of the temporal match. On average we see the rural (average R2= 0.40), industrial sites (R2= 
0.41) and the urban (R2 = 0.44) sites have a relatively similar temporal correlation, while the 
traffic site shows a better performance (R2= 0.61). However when we exclude the Athens 
station from the comparison, the average performance of the urban stations improves to an 
average R2of 0.50. The station of Athens (ATH) shows a poor temporal fit for all three models 
(R2< 0.15). Looking at the timeseries plots for ATH (Figure 6-2), the CTMs estimate sharp PM10 
peaks (caused by influx events of Saharan dust) that are not captured in the PMF 
measurements, while contrarily two peaks around October 2019 are not captured by the CTM 
models. As stated previously, the number of data pairs in 2019 (Table 3-3) can differ 
substantially between stations and should be taken into account when interpreting these 
statistics. 
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Figure 6-1 – Metrics of the modelled PM10 concentrations compared to observed PM10 for all 
PMF stations for the year 2019. Bias (µg/m3), temporal correlation (R2) and RMSE.  Green = 
CHIMERE against observations, Red = EMEP vs observations, Blue = LOTOS-EUROS vs 
observations. 

From the timeseries in Stuttgart (average R2> 0.5) (Figure 6-3) one can see that the CTMs are 
able to reproduce the temporal variability seen in the daily observations although some of the 
peaks are either over or underestimated, which is in line with the evaluations in section 4. In 
the next sections we will go into further details when investigating the specific source sector 
contributions. 

 

Figure 6-2 - Timeseries and Scatterplot of total observed and modelled PM10 for the Athens 
station (ATH) 
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Figure 6-3 Timeseries and Scatterplot of total observed and modelled PM10 for the Stuttgart 
station (STG) 

6.2 Biomass Burning  

The majority of stations (11 out of 15) identified a biomass burning-like PMF profile, often 
clearly manifested by the presence of levoglucosan as tracer species, since it is released 
during wood combustion processes (Bhattarai et al., 2019). The station in Athens applied an 
Aethalometer to differentiate between BCfossil fuel and BCbiomass (Diapouli et al., 2017), however 
a clear biomass burning profile was not identified, but speculated to be within their ‘mixed 
source’. The labels ‘Residential combustion biomass’ (EMEP and LOTOS-EUROS) and 
‘Residential combustion’ (CHIMERE) were selected for the CTMs to compare against the PMF 
profiles of Biomass burning. In general the CTMs are able to represent well the temporal 
variability of the biomass burning source with an intermediate to good fit (Figure 6-4), with 
average R2 for LE of 0.50, CHIMERE of 0.42, and EMEP of 0.50.  

However, there is a variability in the models’ performances between the stations. For example, 
biomass contributions in Mediterranean stations (Barcelona (Figure 6-6), Montseny and Milan 
(not shown)) are overestimated by the CTMS, especially during winter periods. According to 
the authors of (in ’t Veld et al., 2023) neglectable wood burning takes place within Barcelona, 
which explains the fact that there is no clear biomass burning profile identified in the city. Even 
though the CTM models frequently calculate concentrations between 5-10 µg/m3 of PM10 
during the winter months, resulting in high biases. The generic approach used for the 
production of the CAMS-REG emission inventory applied within the models whereby biomass 
driven residential emissions are determined based on population density and accessibility to 
forested area has been shown to be less suitable for some cities, overestimating biomass 
emissions in Mediterranean/Southern cities like Barcelona, Milan or Grenoble. 

In contrast, we see a small underestimation by the CTM models in comparison to the biomass 
burning profile in the less densely populated Melpitz and Gattringen stations (Figure 6-5). 

In general, EMEP provides the lowest biomass concentrations of all three models (potentially 
due to its relatively thicker surface layer), while also showing the smallest bias and the closest 
agreement with PMF concentrations. CHIMERE in general provides the highest 
concentrations, which can be explained by the fact that the CHIMERE residential contribution 
includes other fuel-types, while the other two CTM models provide the fuel specific biomass 
burning residential combustion contribution only (Table 3-2). 

The PMF profiles related to biomass burning generally showed a clear and consistent match 
with their CTM counterparts. This strong alignment is largely due to the relatively stable nature 
of the biomass burning profile observed at most stations. 
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Figure 6-4 Metrics of the modelled PM10 concentrations for Residential combustion compared 
to PM10 concentrations equal to the ‘Biomass/Wood burning’ or ‘Combustion’ PMF factors for 

the year 2019. Bias (µg/m3), temporal correlation (R2) and RMSE. Green = CHIMERE , Red = 
EMEP, Blue = LOTOS-EUROS. 

The EBAS database provided one station (Birkenes II - NO0002R – Appendix D) that met the 
data coverage criteria and measured levoglucosan. Figure 6-7 shows that the levoglucosan 
concentrations in the Birkenes II and ‘residential combustion (biomass)’ label of the LOTOS-
EUROS model correlate well (R2 = 0.5), which is in line with the ‘biomass burning’ profile 
comparisons.  

These results illustrate that CTM models can effectively represent the temporal variability of 
PM from residential wood burning in many cases. However, as noted previously, performance 
varies per region, where especially the mediterranean stations are showing discrepancies. 
Nevertheless, levoglucosan remains a widely recognized robust tracer for biomass burning 
activities (Bhattarai et al., 2019; Simoneit et al., 1999).  
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Figure 6-5 – Timeseries and scatter plot of CTM and PMF biomass burning contributions for the 
Melpitz research station (MLP_RS, top panel) and Gattringen (GRT, bottom panel). 

 

 
Figure 6-6 – Timeseries and scatter plot of CTM and PMF Biomass burning contributions for 
Barcelona (BCN). 
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Figure 6-7 – Time series and scatterplot between levoglucosan concentrations and the 
Residential Combustion biomass label of Lotos-Euros at the Birkenes II station. Time Series 
plot; left y-axis is the modelled concentration of Lotos-Euros (µg/m3), right y-axis is the 
observed levoglucosan concentration (µg/m3). Scatterplot: y-axis is modelled concentration, 
while x-axis represents the observed levoglucosan concentration. 

6.3 Road traffic  

Road traffic emissions are in general captured in either a single ‘traffic’ profile identified through 
Elemental Carbon (EC) in combination with a number of metal components or split into an 
exhaust and non-exhaust profile. In those cases, the non-exhaust emissions, which represent 
the brake and tire wear of vehicles, often form a co-profile with dust particles due to the 
simultaneous resuspension of mineral particles from the road into the air (e.g. Road Dust). In 
the current model runs of LOTOS-EUROS, EMEP and CHIMERE the resuspension of PM was 
not activated, however for EMEP and LOTOS-EUROS the exhaust and non-exhaust emissions 
were split into two labels whereas the CHIMERE model has a single ‘Traffic’ source. 

In contrast to the BB profile (section 6.2), road traffic proved more challenging to match. This 
was primarily due to the presence of exhaust and non-exhaust components, as well as a partial 
interference from (resuspended) mineral dust, which often ended up in the traffic-related 
profile.  

The matching of CTM sources to traffic related PMF profiles for each station is specified in 
Table 6-1. For most stations a single PMF road traffic profile is provided. For these stations we 
aggregated the non-exhaust and exhaust contributions from EMEP and LOTOS-EUROS into 
a single ‘traffic’ contribution, while CHIMERE only provided a single traffic contribution. 
Moreover, the stations of BCN, MSY and ATH provided a non-exhaust or road dust profile, 
which were compared against the non-exhaust sectors of the EMEP and LOTOS-EUROS 
models and the traffic sector of CHIMERE. 

Figure 6-8 shows the comparison of the traffic contributions in the CTMs and PMFs, 
corresponding to the matches shown in Table 6-1. 
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 Table 6-1 – Overview comparisons between traffic sectors (CTM) and associated PMF profile 

CTM 
model stations CTM source(s) PMF Profile 

LE 

GRT & 
STG 

Traffic 

Traffic CHIM Traffic 

EMEP Traffic 

LE 

BCN & 
MSY 

Traffic 

Combustion CHIM Traffic 

EMEP Traffic 

LE (BERN / 
BSL/ 

ZRCH/ 
MGD / 
PAY) 

Traffic  

Road traffic 
CHIM Traffic 

EMEP Traffic 

LE 

ATH 

Exhaust 

Vehicular exhaust CHIM Traffic 

EMEP Exhaust  

LE 

MIL 

Exhaust 

Vehicular exhaust CHIM Traffic 

EMEP Exhaust  

 

At a first glance we see that the models show larger traffic contributions than the PMF data for 
some Swiss stations but we should note that for Switzerland as is explained in section 6.1 
these statistics are based on the limited number of observations in the winter period of 2019 
giving a skewed image for these stations. All together we see mediocre to low correlation 
coefficients indicating the CTM and PMF models are having difficulty in representing this highly 
spatially and temporally variable source, in a time consistent way. This is in line with results 
from the RI-urbans project where a comparison was performed between the CAMS regional 
ensemble EC from fossil fuel versus source specific EC from aethalometer data for the year 
2018. On average, the CAMS ensemble eBC attributed to traffic showed an average bias of -
14.7% compared with the measurements. Which was linked to the problem of sub-grid 
representativeness. The average temporal correlation was R=0.50 (R2 =0.25) which is 
somewhat higher than for most stations in our comparison for PM10 traffic, which can be 
expected since the EC comparison is more direct focusing on one component where the PM10 
contributions are composed of several components. 

Below we describe in more detail the comparisons for the different stations. 
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Figure 6.8- Bias (µg/m3), temporal correlation (R2) and RMSE between the daily CTM PM10 
concentrations for traffic or traffic exhaust and the traffic-related (traffic, exhaust or 
combustion) PMF contributions for the year 2019 (see Table 6-1 for the included sources in the 
matching). Green = CHIMERE, Red = EMEP, Blue = LOTOS-EUROS. 

For Milan and Athens the PMF identifies an ‘(Vehicular) exhaust’ profile. We compared the 
exhaust labels from EMEP and Lotos-Euros against the Exhaust factors present in MIL_PAS 
and ATH since the definition of the profile suggests that the PMF profile mainly consists of 
exhaust traffic emissions. For the MIL_PAS station (not shown) the models overestimate the 
traffic contributions compared to PMF, with the largest overestimation by CHIMERE, which 
also contains non-exhaust contributions. The temporal correlation is consistently low for all 
models (R2 < 0.25). This overestimation may be due to an overestimation of the emissions at 
this site, or too low mixing in the models in the Po valley.  

In contrast, for the ATH station all CTMs provide lower traffic than the ‘Vehicular exhaust’ PMF 
factor contributions (LE NMB = -68%, EMEP -70%, CHIMERE -61%). When we add the non-
exhaust contributions from LE and EMEP, the biases are reduced (LE NMB = -46%, EMEP -
62%). The question arises if the vehicular exhaust profile in ATH consists merely of exhaust 
contributions, or also non-exhaust traffic or other source contributions. Especially since the 
ATH station also identified a non-exhaust profile. Consultation with the PMF data providers 
revealed that the exhaust profile contains most of the Zn and Ni species, which they relate to 
tire wear, but also lubricating oil. Moreover, certain caution with the PMF interpretation for 
Athens is required, since a number of organic compounds were not included into the analysis, 
which resulted in relatively high levels of unassigned mass and uncertainty (personal contact). 
On the other hand the underestimation of traffic-related contributions by CTMs at urban 
stations is not unexpected as it is observed in previous comparison work between traffic labels 
and PMF (Pekel et al., 2025; Timmermans et al., 2022). A major reason here is the inherent 
differences in comparing an area averaged value (grid-cell representing 15x15 km2) for traffic  
sources characterised with large subgrid variability against a point of observation representing 
the PM of its direct environment.  
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An underestimation is seen for the German stations and Bern in Switzerland. The stations in 
Germany (STG & GRT) identify a ‘traffic’ and a ‘resuspension’ profile, whereby the first profile 
contained the majority of EC, but also quantities of Fe, Ba, Zn, Sb and Cu which are all tracers 
related to tire and brake-wear (Grange et al., 2021; van Pinxteren et al., 2024). The 
resuspension profile contains large contributions of Al, V, Ca and to a lesser extent the tracer 
species related to (non-)exhaust emissions. Because of the inclusion of some tracers related 
to non-exhaust emissions in the PMF profile we included the non-exhaust contributions of 
EMEP and LOTOS-EUROS in the comparison to PMF data as presented in Figure 6-8. The 
inclusion of these non-exhaust contributions provide an improvement in the R2 (average 
increase of 0.07 and 0.05 for LE and EMEP, respectively) and reduced biases for GRT (LE: 
from -1.18 to -0.75 µg/m3 & EMEP: -0.52 to -0.26 µg/m3) and STG (LE: from –1.76 to -0.99 
µg/m3 & EMEP: -1.23 to -0.77 µg/m3) as compared to statistics excluding the non-exhaust 
contributions from these two models. The traffic contributions in CHIMERE are somewhat 
higher leading to a positive bias for the station GRT and lower negative bias in STG (biasgrt = 
0.22 & biasSTG = -0.52 µg/m3).  

The stations in Switzerland identified one ‘traffic’ profile. The metrics provided in Figure 6-8 
only cover a limited comparison between the observed and modelled traffic contributions, due 
to the limited (N=22) datapairs in 2019. However, for the winter months the daily temporal 
correlation for PAY, BSL, ZRCH and BERN was decent (CHIMERE R2~ 0.38), LOTOS-EUROS 
R2 ~ 0.27 and EMEP R2 ~0.30). For the rural MGD station a consistent low correlation was 
found (R2 <0.11) and the lower positive bias seems to reflect a better representation of rural 
conditions by the model resolution. Looking at the average concentrations for 2018-2019 per 
station, we can see that for the PAY site (0.20 µg/m3) the PMF contribution of traffic is very 
low, and the models overestimate the traffic contribution substantially. The BERN traffic station 
is the only station in Switzerland where we see lower CTM contributions than in the PMF for 
LOTOS-EUROS and EMEP (Figure 6-9). This above all shows that there is station specific 
variability in how well the PMF and CTM traffic estimations match within Switzerland, where 
the CTMs tend to overestimate rural locations and underestimate traffic stations.  

Finally, the stations in Spain (BCN and MSY) describe that the ‘combustion’ profile represents 
different sources depending on the station. In Barcelona, the ‘combustion’ profile is mainly 
related to traffic (high contributions of EC), while in Montseny it represents a combination of 
traffic, industry and biomass burning. On top of that, both stations identify a ‘Road Dust’ profile, 
containing Fe, Cr, Cu and Sn species, which could contain part of the tire/brake-wear particles. 
For the BCN station (Figure 6-10) we see that the traffic exhaust contributions of EMEP (NMB 
= 10%) and LOTOS-EUROS (NMB = -2%) are much closer to the PMF combustion contribution 
than the total traffic contribution of CHIMERE (NMB = 138%). This could indicate an advantage 
of separating exhaust and non-exhaust sectors allowing a better fit with certain profiles. 
However it should be noted that only the winter months data pairs are compared here in the 
metrics. The CTMs traffic contributions overestimate the concentrations of the ‘combustion’ 
profile in MSY (range NMB= + 300-1200%) (Figure 6-8). This could mean that for MSY, a 
remote rural station, the emission inventory overestimates the emissions for traffic attributed 
at this location or that the spatial representativeness of the grid-cell does not properly account 
for such remote locations. It should also be noted that for MSY, the total average concentration 
of the ‘combustion’ profile is very low (0.19 μg/m3) considering its representing several sources. 
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Figure 6-9 Timeseries and scatterplot of the Traffic PMF profile and Model contributions of 

traffic (exhaust & non-exhaust) for PM10 at the STG (upper panel) and Bern (lower panel) 
stations. Green = CHIMERE, red = EMEP, Blue = LOTOS-EUROS, black = observations. 

  

Figure 6-10 Timeseries and scatterplot of the Combustion (containing traffic) PMF profile and 
Model contributions of traffic (CHIMERE) and Exhaust (LOTOS-EUROS and EMEP) for PM10 at 

the BCN station. Green = CHIMERE, red = EMEP, Blue = LOTOS-EUROS, black = observations. 
 

For the BCN, MSY and ATH stations an additional comparison was made between the non-
exhaust sectors of EMEP and LOTOS-EUROS, the traffic sector of CHIMERE and the Road 
Dust or non-exhaust profiles identified by the PMF (Figure 6-11). The temporal correlation for 
the ATH station was poor for all models, however, the PMF data providers emphasize the 
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presence of a high uncertainty surrounding the profiles and the fact that tyre-wear species were 
also present in their exhaust profile. For the Spanish stations, the non-exhaust sectors of 
EMEP and LOTOS-EUROS showed an underestimation for BCN (NMB; LE = -44% ; EMEP = 
-50%) and were close to the observed road dust profile in MSY with an average bias of 0.04 
μg/m3, however it should be noted that the average concentration of the Road Dust profile for 
MSY is very low (0.07 μg/m3). Unsurprisingly, the traffic sector of CHIMERE showed higher 
overestimations, since it represents both exhaust and non-exhaust emissions. Temporal 
correlations for BCN are reasonable (R2 ~0.35-0.50), while CHIMERE shows a very low 
correlation for MSY. 

 

Figure 6-11 Bias (µg/m3) temporal correlation (R2) and RMSE between the daily CTM PM10 
concentrations for traffic or traffic non-exhaust and the non-exhaust and road-dust PMF 
contributions for the year 2019 (see Table 6-1 for the included sources in the matching). Green 
= CHIMERE, Red = EMEP, Blue = LOTOS-EUROS. 

 

The Dutch stations contained a ‘Brake Dust or Traffic’ profile, containing high contributions of 
Cu, Mo, Sb and Zn (all associated with brake wear emissions). The close proximity of a heavy 
steel and iron production plant and the associated activities (metal friction in the factory or by 
industry related railway transport) are likely causing contamination of the profile at these sites.  
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Figure 6-12 Timeseries and scatterplot of the Brake dust or traffic PMF profile and Model 
contributions of traffic (exhaust & non-exhaust) for PM10 at the IJM station. Green = CHIMERE, 
red = EMEP, Blue = LOTOS-EUROS, black = observations. 

As shown in Figure 6-12 for Ijmuiden, the CTM-estimated road traffic contributions are 
consistently below the concentrations observed of the ‘Road dust or Traffic’ PMF profile for all 
Dutch Stations. Moreover, temporal agreement is poor across all stations and models. 
Comparing the PMF profiles across the stations show that the average concentrations at IJM 
(6.93 µg/m3), WAZ (5.09 µg/m3) and BVW (3.77 µg/m3) are higher than most other European 
sites (other stations report < 3 µg/m3), with values being in the same range of BERN (6.91 
µg/m3) and FRB (3.79 µg/m3), both classified as ‘traffic’ stations. These high concentrations for 
the Dutch stations in comparison to the other traffic-related PMF profiles strengthen the 
suggestion of (Mooibroek et al., 2022) that contributions of railway transport, mineral dust 
(contaminated with metals from the industrial location and resuspended) and industry-related 
emissions influence this profile.  

We therefore added the industrial contributions of the CTM models to the comparison, but then 
the CTM concentrations overshoot the PMF concentration and did not improve the match. 
Unfortunately resuspension of PM (through traffic) was not included in the models and could 
be a possible way to improve this match.  

To further evaluate the ability of the models to correctly represent variations in the traffic 
contributions we have compared the CTM and PMF weekly profiles for this source contribution 
(Figure 6-13). In general we observe that for the majority of stations a similar weekly pattern 
for the CTMs and PMF with relatively low concentrations starting on monday that increase 
throughout the week, after which we see a clear drop in concentration during the weekend. 
There are some deviations; for some stations (e.g. Bern and Zurich, not shown) we see an 
increase of traffic contributions from the PMF profiles on Friday with a sharp decrease on 
Saturday. For the rural station of Payerne (PAY) we also see this small increase in PMF on 
Friday and decrease on Saturday, albeit less dynamic than for the Swiss urban or traffic 
locations. The CTMs seem to capture the general pattern between weekend- and working 
days, but for most sites the relative change is smaller in the CTM (see e.g. the weekly profile 
for STG in Figure 6-13 top panel), providing relevant feedback on the applied weekly cycles in 
the models. Depending on the station and model, the CTMs also estimate a Friday-peak (e.g. 
PAY, Figure 6-13 bottom panel), however there are mismatches, for example the PMF profile 
in Basel does not observe a Friday peak, while the EMEP and LOTOS-EUROS stations do 
estimate this (data not shown). These evaluations highlight the need for location dependent 
time profiles and can support further developments of the CAMS TEMPO emission profiles in 
the CAMS2_61 project. 

Although all models apply the same temporal emission profiles to the emissions, differences 
may arise due to the different model designs and attribution method, where EMEP and CHIM 
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represent potential impacts and LOTOS-EUROS represents actual contributions. Especially 
the secondary PM from traffic is influenced by many processes and other emission sources, 
thereby depending on model choices and the attribution method.  

 

 

Figure 6-13 Average traffic contributions per day of the week (µg/m3) for the stations of GRT 
(urban) and PAY (Rural background). Green = CHIMERE, red = EMEP, Blue = LOTOS-EUROS, 
black = observations. Bars represent the variability of daily mean concentrations.  

6.4 Industry 

Five stations (BCN, MSY, IJM, BVW and WAZ) identified a profile called industry. All these 
profiles were compared against the ‘Industry’ sources from the CTM models. Initially, we 
distinguished between combustion and non-combustion industrial sources for EMEP and 
LOTOS-EUROS, however within the PMF profiles used in this work this distinction was not 
clearly found. Figure 6-14 shows that the CTMs consequently overestimate industry 
contributions for the stations in Spain. 
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Figure 6-14 Metrics of the daily modelled PM10 concentrations for Industry sectors compared to 
PM10 concentration equal to the Industry PMF factors for the year 2019. Bias (µg/m3), temporal 

correlation (R2) and RMSE. Green = CHIMERE , Red = EMEP, Blue = LOTOS-EUROS. 

The Industry contributions in Barcelona and Montseny are (remarkably) low throughout the 
year (BCN = 0.05 µg/m3 and MSY = 0.03 µg/m3), whereby it should be noted that some of the 
industrial contributions are expected to be present in the ‘combustion’ profiles. However, 
when we would aggregate the mass of both the industry and combustion profiles at both sites 
(annual average BCN = 0.81 & MSY = 0.11 µg/m3) the industrial labels of LOTOS-EUROS 
(3.88 µg/m3), CHIMERE (2.81 µg/m3) and EMEP (2.04 µg/m3) are still substantially higher. 
Besides difficulties related to the PMF industrial factors this can also be related to an 
overestimation of emissions in the models and/ortoo low effective emissions heights. 
LOTOS-EUROS (3.88 µg/m3), CHIMERE    
 

Similarly to the road dust or traffic profiles at the Dutch stations we can observe a poor temporal 
correlation (R2 <0.1) for the industry contributions (Figure 6-14). The stations of IJM (bias: LE 
= -0.03 , EMEP = 0.46, Chim = 1.59 µg/m3) and BVW (bias: LE = 0.05, EMEP = 0.54, Chim = 
1.67 µg/m3) show an overestimation of PMF industry contributions by the models, whereas the 
EMEP and LOTOS-EUROS contributions underestimate the PMF industry concentrations for 
WAZ (bias: LE = -1.41, EMEP = -0.92, Chim = 0.20 µg/m3) . 

The three Dutch stations are closely positioned at different sides of the heavy industry plant 
and all fall within the same grid-cell of the CTM models. This enables a direct evaluation of 
how the modelled area daily averages can differ from the concentration dynamics at the three 
sites. Indeed, the concentration dynamics of the industry profile at WAZ and IJM are not 
overlapping, with peaks at WAZ not present in IJM (Figure 6-15). This is probably due to 
changes in wind direction, but may also partly result from the industry profile at WAZ being 
contaminated with slightly more crustal matter PM (Mooibroek et al., 2022) and the minor ‘PAH-
rich’ profile could contain PM mass originating from ‘Industrial activities’. A main take away 
from the stations closely surrounding the steel plant is that PMF-CTM comparisons for such a 
polluted area proves to be problematic due to the high probability of profile mixing (crustal 
matter, shipping, traffic and industry) and the area the CTMs represent which does not entirely 
represent the local dynamics. 
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Figure 6-15 Timeseries and scatterplot of the Industrial PMF profile and Model contributions of 
Industry for PM10 at the WAZ and IJM station . Green = Chimere, red = EMEP, Blue = LOTOS-
EUROS, black = observations. 

6.5 Shipping  

Only three stations identified a ‘heavy oil (combustion)’ profile: Barcelona, Montseny and 
Athens. These Heavy Oil profiles are frequently identified at harbor-cities and can largely be 
associated with shipping emissions, therefore we match the CTM labels of shipping against 
this profile. The profile is identified through the tracer specie of Vanadium (V) and could also 
be identified by making use of the daily wind directions.  

For the station of Athens we observe that the annual CTM concentrations of shipping show a 
small relative bias in comparison to the Heavy Oil profile (Figure 6-16 top panel)  (EMEP = -
0,19 µg/m3, CHIMERE = -0,77 µg/m3 and LOTOS-EUROS = -0,18 µg/m3), while a good 
temporal match is more difficult to achieve (all models, R2 < 0.25). Looking at the BCN station 
(Figure 6-16 bottom panel) we show the period of 2018-2019, since this allows us to include 
all data points from the PMF analysis. Here, we observe a higher overestimation of the EMEP 
(bias = 3.52 µg/m3 & NMB = 33.3%) and LOTOS-EUROS model (bias = 1.36 µg/m3 & NMB = 
11,9%)). On average, at BCN and MSY, the heavy oil profile contributed ~2.5% and 0.7% 
respectively to the total PM10 concentration. In comparison we can see that the shipping 
contributions in EMEP (15.23% and 8.96%), LOTOS-EUROS (8.35% and 6.43%) and 
CHIMERE (10,1% and 7.32%) are relatively larger contributors to annual PM10 concentrations. 
Looking at the Athens station, the PMF profile contribution is on average 7.4% and is more 
similar to the CTM shipping contributions (EMEP = 7.09% , CHIMERE = 5.98% ,LOTOS-
EUROS = 5.69%).  
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When looking at other studies we can see that heavy oil (Shipping) contributions reported in 
Spain and France are slightly higher than the concentrations reported in this PMF study (annual 
Heavy oil concentration BCN = 0.38 µg/m3), however it should be noted that the measurement 
periods of these studies were before 2011 (Ledoux et al., 2023; Toscano, 2023; Weber et al., 
2019).  

 

 
Figure 6-16 – Time series and scatterplot of the Heavy Oil combustion PMF profile and Model 
contributions of Shipping for PM10 at the ATH (top panel) and BCN (bottom panel) station. 
Green = CHIMERE, red = EMEP, Blue = LOTOS-EUROS, black = observations. 

Interpreting the potential uncertainty in the CAMS tools for the shipping and heavy fuel profile 
comparisons remains challenging with the currently limited number stations available for 
evaluation. Since both studies used vanadium and nickel in their PMF to identify the 
shipping/heavy fuel profiles the stability of the profile is relatively good. After consultation with 
the data providers of the BCN and MSY stations, the stability of the profile indeed seems within 
their expectations. Using an emission inventory containing more detailed local emission would 
likely improve the match with the profile in BCN. It would be useful to further investigate the 
impact and differences between European shipping inventories and more local inventories. 

The better agreement for Athens could indicate that the European emission inventory for 
shipping is better represented in Athens than it is in Barcelona. Also the model resolution may 
play a role since it is known that the Barcelona harbour air masses do not always impact directly 
the measurement station (personal communication). Altogether, the poor match observed in 
BCN and MSY are not easy to attribute to one methodological choice in the CTM, nor to the 
PMF estimates. Rather, it underlines the high site (and time period)-specific variability in the 
CTM-PMF evaluations, making it even unfortunate that we only have three sites. Integrating 
additional observational data from monitoring networks, especially for certain tracers such as 
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V for shipping, can greatly enhance the number of stations which allows us to evaluate the 
temporal dynamics of the CAMS tools.  

Both Nickel and Vanadium are tracers which are emitted by heavy fuel oil combustion. 
Appendix D shows the stations providing nickel and vanadium observations in 2019, either 
with a low- or high-volume sampler, sampled with filters representing a daily until an average 
concentration of several days.  

The comparison of shipping contributions from LOTOS-EUROS against the daily (or weekly) 
concentrations of nickel and vanadium showed a wide range of correlations with the 
observations across stations (appendix D). Pearson correlations (R) ranged between 0.01 to 
0.74 for vanadium and 0.00 to 0.84 for nickel, indicating poor to decent agreements depending 
on the site and likely its topology. Some of the stations showing very low correlations (R < 
0.05), including EE0009R, NO0047R, NO0090R and FI0036R, are located Estland, Norway 
and Finland. These stations are located in isolated rural places with a large proportion of either 
the vanadium or nickel observations set below or to a detection limit. However, the FI0018R, 
(Figure 6-17) located relatively close to the gulf of Finland and possibly exposed to regional 
shipping lanes, also exhibits weak correlation with the shipping source contribution with a 
correlation of 0.04 for nickel and 0.20 for vanadium (N=52). Unlike some other poorly correlated 
stations, this station does not report any nickel or vanadium concentrations below the detection 
limit. While some dynamics are corresponding in the timeseries we can see that some V peaks 
are not overlapping with the modelled shipping contributions.  

  

Figure 6-17 – Time series (left panel) and scatterplot (right panel) of 7 days averaged vanadium 
concentration against the Shipping source contribution of the LOTOS-EUROS model at the 
FI0018R station. Left y-axis in time series plot shows the modelled PM10 concentration and the 
right y-axis shows the observed levoglucosan concentration. 

On the other hand, we find multiple stations near coastal areas, such as DE0001R and 
DE0009R (Figure 6-18) that show a similar dynamics over time between modelled shipping 
contributions and Vanadium, again based on a 7 day averaged sample.  
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Figure 6-18 Timeseries of 7 days averaged vanadium concentration against the Shipping 
source contribution of the LOTOS-EUROS model at the DE0001R and DE0009R stations. Left y-
axis shows the modelled PM10 concentration and the right y-axis shows the observed 
levoglucosan concentration. 

6.6 Sea salt  

The majority of stations identify a single sea salt profile (e.g. ‘sea salt’), identified through large 
contributions from CL-, Na+, but also Mg2+. There are several stations that identify two factors 
per station, separating between a fresh (primary emitted) and ‘aged’ counterpart in which 
secondary formed aerosols or contaminations from other sources are present (Tab 6-3). 
Moreover, the resuspension of salt particles present on road surfaces could cause the co-
emission of salt, mineral dust and traffic tire/brake wear particles. This could especially be the 
case for stations where salt is used against road icing, but previously deposited sea salt 
particles in warmer areas could also be subject to resuspension. As a result, PMF profiles can 
contain an aggregate of particles from these sources and are subsequently identified as such 
(e.g. STG – Road and Sea Salt).  

For the stations that identified multiple PMF factors containing the majority of seasalt species 
(GRT, STG, and the stations in Melpitz), we decided to aggregate them into a single Sea Salt 
profile, making the comparison with the seasalt species in the CTM models more 
straightforward. Table 6-2 shows the PMF profiles that are compared against all seasalt 
species within the CTM models.  

Table 6-2 – Overview of PMF factors identified and compared against CTM source 

Station PMF Factor Identified  Compared against 
CTM species: 

ATH  Sea Salt Total seasalt in the 
models including all 

labels 
BCN & MSY Sea Spray 

BERN / MGD / PAY/ ZRCH/BSL Aged Sea Salt 

IJM / BVW / WAZ Sea salt 

GRT / STG  ‘Road and Sea salt’ & ‘Aged 
Road and Sea Salt’ 

Melpitz stations ‘Salt (Fresh)’ & ‘Salt (aged)’ 

The GRT, STG and Melpitz stations all showed that there was a good temporal correlation 
between sea salt species in the CTM models and the combined mass of the aged and fresh 
salt profiles (Figure 6-19). It is interesting to note that the aged sea salt profiles described at 
the locations in Melpitz do find a satisfactory fit with seasalt of the CTM models while also being 
a mixture of both anthropogenic and natural sources. The ‘(fresh) salt’ profile in Melpitz 
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contributes on average 1% to the total PM10, whereas the ‘(aged) Salt’ contributes 10.4%. A 
possible explanation for this observation is the relatively small contribution of the 
anthropogenic sources to the aged sea salt mass in Melpitz (rural stations), while the 
contribution in the Swiss stations is more substantial. 

Moreover, the observed bias at the particular stations was relatively low: EMEP and CHIMERE 
often slightly underestimating PM10 concentrations, while LOTOS-EUROS tended to 
overestimate the observed PM10 concentration. The tendency of LOTOS-EUROS to simulate 
higher seasalt concentrations then EMEP and CHIMERE is partly discussed in section 4. This 
leads to larger overestimations for LE in the stations of ATH, MSY and in particular all three 
Dutch stations.  

In contrast to the good fit of the stations located in Germany, all five stations in Switzerland 
show very poor temporal correlation (R2 < 0.2) as can be seen in the example for MGD (Figure 
6-20). Grange et al. (2021) mention that their aged sea salt profile contained contributions from 
metals, indicating that the profile was probably influenced by anthropogenic (traffic) emissions 
or resuspension of dust, containing metals. This could partly explain the poor fit for these 
stations with sea salt species in the CTM models.  

 
Figure 6-19 Metrics of the daily modelled Seasalt concentrations compared to PM10 concentration 
equal to the (fresh) and (aged) seasalt PMF factors for the year 2019. Bias (µg/m3), RMSE and 

temporal correlation (R2). Green = CHIMERE , Red = EMEP, Blue = LOTOS 
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Figure 6-20 Timeseries and scatterplot of (fresh) and (aged) Seasalt PMF profile and Model 
contributions seasalt at the MLP_RS station (top panel) and MGD station (bottom panel). Green 
= Chimere, red = EMEP, Blue = LOTOS-EUROS, black = observations. 

6.7 (Mineral) dust  

Table 6-3 shows an overview of the stations containing profiles that correspond to mineral dust. 
In general, mineral dust profiles are identified by species like Al, Mg, V, Ti, Ca2+, Na (Glojek et 
al., 2024; Grange et al., 2021; in ’t Veld et al., 2023; Mooibroek et al., 2022; van Pinxteren et 
al., 2024). PMF profiles containing (mineral) dust contributions obtain these species from long-
term transport mineral dust, blown-up dust from local sources (e.g. due to agricultural activities) 
or from resuspension of dust particles from roadsides by traffic induced turbulence or wind. In 
the latter case, species from previously emitted sources could be mixed with the tracer species 
for mineral dust. A similar discussion as the ‘Aged seasalt’ mixtures could be held about the 
definition of the profiles regarding mineral dust. As seen in Table 6-3, only a limited number of 
stations identifies a ‘clear’ (mineral) dust profile, while stations as GRT and STG found tracer 
species to be present within their traffic or resuspension profiles, rather than finding a clear 
profile. Moreover, the stations of IJM and BVW found both a ‘road dust or traffic’ profile as well 
as a ‘Crustal matter’ profile. As previously mentioned, Mooibroek et al. (2022) point out that 
the mineral dust in the region is likely mixed with other sources, either from the metal industry 
activities therefore naming one profile; road dust or traffic, while the crustal matter profile 
contains, next to the Al, Ca, Si, Ti and Li, high levels of Na that could be derived from sea salt 
particles. To make matters more complex, material used in steel production can contain 
elements that are similar to crustal material (Al, Si, Ti) and were also identified within the 
industry profile of the station. As an initial comparison we decided to compare the Crustal 
matter profile of this station with all the mineral dust present in the CTM models. In the CTM 
models, the vast majority of the dust species is emitted from Saharan dust events in outer 
boundary areas. Dust particles from agricultural activities or resuspension is limitedly available 
in the models. For the LOTOS-EUROS and EMEP models dust emissions are strictly attributed 
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to the natural, boundary and Saharan dust sectors. In the CHIMERE model the vast majority 
is also allocated to the natural emissions or long-range transport influx sectors, however a 
small contribution of dust is allocated to other sectors (on average 3% of all dust). This may be 
explained by the influence of changes in other particle concentrations on the size distribution 
and concentrations of dust  

Table 6-3 Overview comparison PMF factors identified per station against total dust present in 
the model. 

Station PMF Factor Identified  Compared to CTM  

ATH  Soil dust All dust components in 
models; of which main 
contributors are : boundary 
influx, Saharan sand 
 

BCN & MSY Mineral  

BERN / MGD / PAY/ ZRCH/ BSL Mineral Dust 

IJM / BVW / WAZ Crustal Matter 

 

Figure 6-21 provides an overview of the Bias and R2 for each station. It is not surprising that 
the station of Athens, closest located to the Saharan region, shows a good fit and overlapping 
peaks that correspond to Saharan dust influx events (LOTOS-EUROS R2 = 0.63, EMEP R2 = 
0.60, CHIMERE R2 = 0.43, Figure 6-22 top panel). We do see that the EMEP and LOTOS-
EUROS model, and to a lesser extent CHIMERE , calculate high dust peak concentrations that 
are not observed in the PMF profile, while in between the peak periods of the models 
underestimate the (more local) mineral dust profile concentrations. This pattern is similar at all 
other stations, where sharp peaks (influx Saharan or boundary dust) in the models fall close to 
zero afterwards. Overall this results in an observation that the bias of almost all comparisons 
shows to be negative, implying an underestimation of the CTMs (Figure 6-21).  

 

Figure 6-21 Metrics of the daily modelled dust concentrations compared to PM10 concentration 

equal to the (mineral) dust PMF factors (Table 6-3) for the year 2019. Bias (µg/m3), temporal 
correlation (R2) and RMSE. Green = CHIMERE, Red = EMEP, Blue = LOTOS-EUROS. 
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Figure 6-22 Time series and scatterplot of Soil Dust PMF profile and Model contributions of 
dust at the ATH (top panel) and BERN (bottom panel) station. Green = CHIMERE, red = EMEP, 
Blue = LOTOS-EUROS, black = observations. 

The crustal matter profiles located in IJM and BVW show a particularly bad fit with the natural 
dust species. Which is in line with the possibility that the crustal matter profile, in addition to 
the industry and road dust profiles of these locations are contaminated with one and another’s 
sources. The high volumes of coal and iron transport at the steel facility possibly contributing 
to crustal matter profile could explain the consistently low levels of the CTMs.  

6.8 Nitrate-rich & Sulfate-rich 

Across multiple locations (all except the stations in the Netherlands), PMF consistently 
identifies Nitrate-rich profiles characterized by high concentrations of ammonium and nitrate, 
often accompanied by smaller amounts of sulfate. These profiles represent the presence of 
secondary inorganic aerosol (SIA) formed in the atmosphere through chemical reactions of 
precursor gases such as NOx and NH3. Additionally, Sulfate-rich profiles, identified at the 
stations in Barcelona, Montseny, Switzerland and Germany, consist of high concentrations of 
sulfate and ammonium. Depending on the station (e.g. Melpitz) the sulfate-rich profile 
contributes substantially to the OC concentrations which is likely due to secondary organic 
aerosol formation (van Pinxteren et al., 2024). At some stations, such as Milan and Melpitz, 
this is reflected in the definition of the profile (e.g. ‘Sulfate and SOA-rich’).  
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Table 6-4 - The average percentage of the total measured concentration of: ammonium, nitrate, 
sulfate and organic carbon aerosols included in the nitrate-rich and sulfate-rich PMF profiles. 
These values are based on the stations (N=12) where these profiles were identified with PMF.  

 Nitrate-rich profile Sulfate-rich profile 

 NH4 NO3 SO4
 OC NH4 NO3 SO4

 OC 

Average 54% 71% 15% 4% 41% 0% 60% 25% 

min 32% 64% 0% 0% 28% 0% 51% 7% 

max 63% 80% 23% 18% 68% 2% 70% 47% 

 

Unfortunately, these nitrate- and sulfate-rich profiles do not contain specific information on the 
primary sources contributing to their profiles. The CTM models attribute the nitrate, sulfate and 
ammonium concentrations to the sources of their gaseous precursors, i.e. ammonia (NH3), 
nitrate-oxides (NOx) and sulfur dioxide (SO2) (mainly agricultural, traffic and combustion-
related sectors).  

To be able to compare the PMF contributions with contributions simulated by the CTMs, we 
looked at the Nitrate-rich and Sulfate-rich profiles of all stations and determined how much of 
the total SIA and OC concentrations at that station ended up in these secondary profiles. For 
example, for the STG station, 60% of the observed ammonium was attributed to the nitrate-
rich profile. By averaging these contributions across all relevant stations, we derived a 
generalized profile representing the nitrate-rich and sulfate-rich profiles. This method estimated 
that, on average, the nitrate-rich profile contained approximately 54%, 71% and 15% of all 
ammonium, nitrate and sulfate concentrations, respectively (Table 6-4). For the Sulfate-rich 
profile, this was 41% of ammonium, 60% of sulfate and 25% of OC. For the stations in the 
Netherlands (BVW, IJM, WAZ) a single combined ‘Nitrate- and Sulfate’ profile was identified, 
containing on approx. >95% of ammonium, 75% of Nitrate and 40% of sulfate.  

In most cases, the majority of secondary inorganic aerosols are captured in the Nitrate- and 
Sulfate rich profiles, but the origin of its precursors remains unclear. Depending on the site, 
PMF indicates some SIA contributions in other ‘primary’ or ‘secondary’ profiles. Conversely, 
we find some components (e.g. organics) included in these secondary profiles, believed to be 
caused by the mixing of some profiles, indicating that a general approach for matching these 
nitrate-rich and sulfate-rich profiles is a challenge. Although probably large variability is present 
between sites, we attempted to find such a suitable, generalizable, match between PMF profile 
and CTM sectors. We matched the Nitrate-rich and Sulfate-rich mass of each site against the 
aggregated concentration of all SIA species present in the CTM models, whereby we selected 
the proportion of the species contributing to the profiles (Table 6-4). Initially we disregarded 
the OC contribution, after which we later on added the SOA species of EMEP and CHIMERE 
models (missing in LOTOS-EUROS) to the evaluation to see if the comparison would improve 
for the Sulfate-rich profiles for the stations of MLP_RS, MLP_VIL, GRT and STG. 

It should be noted that this approach closely resembles a conventional comparison between 
observed pollutant concentrations and modelled SIA species, without accounting for the 
specific PMF-derived source contributions. Which could be more informative than this indirect 
comparison between profiles and sources.  
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Figure 6-23 and 6-24 shows the results of the comparison against the nitrate-rich and sulfate-
rich profile respectively. 

 

Figure 6-23 Metrics of the daily modelled Sia concentrations compared to PM10 concentration 
equal to the Nitrate-rich PMF factors (Table 6-4) for the year 2019. Bias (µg/m3), temporal 
correlation (R2) and RMSE. Green = CHIMERE, Red = EMEP, Blue = LOTOS-EUROS. 

That being said, the PMF Nitrate-rich contributions showed a reasonably good agreement for 
all stations were more than the start of 2019 could be compared (BVW, IJM, WAZ, MLP, GRT 
and STG) with the SIA components in the CTMs LOTOS-EUROS (mean R2 = 0.68 , range = 
0.61 – 0.78) and EMEP (R2 = 0.60 , range = 0.54-0.63), and CHIMERE also performed 
reasonable for these stations (R2 = 0.48, range = 0.45 – 0.54). The dynamics of winter months 
in Switzerland and MSY were less well captured for CHIMERE. 

On average, EMEP overestimated the contributions to nitrate-rich the most (bias = 1.52 µg/m3), 
whereas CHIMERE (bias = 0.63 µg/m3) and Lotos-Euros (bias = 1.01 µg/m3) do this to a lesser 
extent.  

Looking at the Dutch stations, in which a single nitrate-sulfate profile was identified and the 
subsequent concentration of SIA from the CTM models was in accordance to the PMF profiles 
the CTMs matched well with respect to temporal variability for Lotos-Euros (R2 = 0.63) and 
EMEP (R2 = 0.62), while here CHIMERE shows only moderate correlation (R2 = 0.33). A 
consistent underestimation from Lotos-Euros (bias= 2.31 µg/m3) and CHIMERE(bias 
CHIMERE= -1.01 µg/m3), while EMEP on average showed a slight overestimation (bias = 0.15 
µg/m3). 
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Figure 6-24 Metrics of the daily modelled Sia concentrations compared to PM10 concentration 
equal to the Sulfate-rich PMF factors (Table 6-4) for the year 2019. Bias (µg/m3), temporal 
correlation (R2) and RMSE.  Green = CHIMERE, Red = EMEP, Blue = LOTOS-EUROS. 

For the sulfate-rich comparison we can observe a poorer temporal fit then the Nitrate-rich 
comparisons (LOTOS-EUROS R2= 0.27, EMEP R2 = 0.19 , CHIMERE R2 = 0.07) for all stations 
and an underestimation for all stations, except for BCN and MSY. This is not entirely surprising 
for a number of stations that explicitly discuss the possibility of SOA components that are 
integrated into their sulfate-rich like profiles, which is also shown in Table 6-4. When adding 
the SOA from the EMEP and CHIMERE models in the comparison against the Sulfate/SOA-
rich profiles of the MLP_RS, MLP_VIL, GRT and STG stations the average bias for these four 
locations improved from -4.17 to -3.05 µg/m3 (EMEP) and from -3.69 to -2.65 µg/m3 
(CHIMERE), while the temporal resolution clearly improved for EMEP (from 0.11 to 0.47) and 
for CHIMERE (from 0.03 to 0.26) due to increased concentrations during the summer period 
which overlaps with the higher SOA formation in this period.  
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7 Conclusions and recommendations 

In this work we have evaluated the consistency and comparability of modelled particulate 

matter (PM) source sector contributions from different modelling systems applied within the 

CAMS policy service. We have disentangled the differences due to the use of distinct chemical 

transport models and differences due to the use of various source attribution methods. In 

addition, we have evaluated the modelled PM source sector contributions with observational 

based source attribution using Positive Matrix Factorisation (PMF) and specific source tracers 

such as levoglucosan (a marker of wood combustion). 

All models and their source attribution methods agree on the residential (biomass) 
combustion emission of primary pollutants as the major anthropogenic source around the 
Mediterranean except for some cities influenced by volcanic emissions. Residential 
combustion is also identified as the major source in Eastern Europe by LOTOS-EUROS and 
EMEP. The relative contribution is shown to grow with increasing PM concentrations. This 
source which is mainly contributing to primary PM is not much influenced by non-linear effects 
and therefore by the source attribution methods used. Contrarily we see considerable 
differences between the CTM’s used due to differences in surface layer height and mixing 
parametrisations. The CTM contributions generally correspond well with the PMF data, 
providing confidence in the modelled CTM contributions and underlying emissions, although 
for some sites the general approach for spatial attribution of residential wood combustion 
emissions in CAMS-REG seems inappropriate (e.g. Barcelona) and requires refinements. This 
also indicates that the dominance of this source modelled around the Mediterranean may be 
overestimated. For eastern Europe no PMF datasets were available preventing the evaluation 
of the reliability of this source being the dominant in that region. The relatively high certainty in 
identifying biomass combustion through PMF—thanks to well-defined tracers in 
observations—makes PMF data for this sector a strong candidate for inclusion in routine 
evaluation exercises within CAMS. 

The CHIMERE model with its source attribution based on a surrogate model identifies 
agriculture as the main anthropogenic source of PM in a wide area in Central Europe and 
around the Baltic sea while EMEP and LOTOS-EUROS suggest a mixture of industrial and 
agricultural sources to be dominant around the Benelux and Germany. The relative impact of 
agriculture decreases for highest PM concentrations. This source which is mainly contributing 
to the formation of ammonium nitrate is highly influenced by non-linear effects and shows larger 
differences between the source attribution methods especially on daily timescales. But also 
differences in model descriptions influencing secondary PM formation led to differences in the 
source attribution results. On an annual scale the differences in secondary PM due to source 
attribution method is within the same range as differences due to the CTM.  

Since the models overestimate nitrate concentrations a proper evaluation of the contributions 
for this source is worthwhile. Unfortunately, within the PMF data the agricultural source 
contributions are included within broader secondary source profiles (mainly the nitrate-rich 
profile) preventing a direct evaluation. 

The larger agricultural contributions in CHIMERE are linked to high negative interaction terms 
between several sources. To avoid large interaction terms which are difficult to interpret by 
users and to better represent the actual contribution of agriculture to PM a redistribution of the 
interaction terms to the relevant sources is deemed worthwhile and is currently being 
investigated by the CHIMERE team.  

Traffic has only been identified in Bern, Zürich and Munich as the major anthropogenic source 
of PM pollution and only by brute force based methods with 15% emission reductions. The 
tagging and surrogate model with 100% emission reduction do not identify any locations with 
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traffic as dominant source indicating that while traffic may not be the dominant contributor, 
considering 15% emission reductions may be most efficient when applied to traffic. This further 
highlights the complementarity between tagging and brute force based methods. The 
comparison with PMF data in Bern and Zürich shows lower contributions by the CTMs than 
from the PMF (except for CHIMERE in Zürich). Low correlations over all sites indicate that the 
CTM and PMF models are having difficulty in representing this highly spatially and temporally 
variable source, in a time consistent way. This is partly related to the mixing of other 
combustion sources and dust resuspension within the PMF traffic source. The model resolution 
may be the main reason that this source is underrepresented as a relevant source by the 
models. To improve modelled traffic contributions for locally influenced locations an increase 
in spatial resolution is recommended and the use of local emission information. An 
investigation of the added value of increased model resolution using u-EMEP is undertaken 
and will be presented in D6.2. The separation of total traffic contributions into subsectoral 
contributions is recommended as it allows better evaluation with observational data and 
identification of ways for improving the model results. Several PMF stations identified a traffic 
resuspension profile, but this component was not included in the three CTMs used in this study. 
The CAMAERA project is addressing this gap by developing gridded hourly non-exhaust 
emission inventories to support improved modelling of this important source. 

The EMEP and LOTOS-EUROS models identify industry as the dominant anthropogenic 
source sector for several cities in Germany and across or close to the Iberian Peninsula. For 
this source we see considerable differences between the CTM models connected to the 
altitude at which these emissions are inserted into the models. But this source is also involved 
in the formation of secondary aerosols and thereby shows some differences due to the 
attribution method. Evaluation of this source with PMF is hampered by the low number of sites 
identifying an industrial source profile and the variety of industrial sources and composition of 
their emissions. 

Shipping is identified by some models/methods as the dominant anthropogenic source for 
some sites around the Mediterranean close to shipping routes or large harbours. Also, here 
the emission altitude and mixing parametrisations may play a role in the difference seen 
between models. Evaluation with PMF data is challenging due to the limited number of stations 
providing a heavy fuel oil PMF source, although this source can often decently be captured by 
tracers as nickel / vanadium. The performance is good for Athens but worse for Barcelona, 
possibly hinting to uncertainties in the emission data.  

While we did not put a lot of focus to the natural contributions in this study, these contributions 
are very relevant with respect to the allowed subtraction of these contributions from PM 
exceedances of limit values in the reporting by EU Member States. Furthermore, the EMEP 
model identifies these natural sources as the main contributor to PM2.5 above 50 µg/m3, 
although comparisons with PMF dust contributions in Athens show that EMEP may be 
overestimating dust in the mediterranean region. Because of the primary nature of natural 
contributions, we do not see differences between the source attribution methods. However, 
differences between the CTMs are considerable related to the difficulty in correctly 
representing the relevant processes (online emission, deposition and transport). LOTOS-
EUROS is showing largest and overestimated sea salt contributions. Comparison with PMF 
sea salt and especially dust data provide a valuable tool to extend common model evaluation 
and identify areas for improvements. Although it would be valuable to consider such 
evaluations in CAMS2_83, PMF datasets are scarcely available and usually provided with large 
time delays.  

 

At present, the CAMS Policy Support Service separates the source attribution into different 

products based on the different methods: potential impact of emission reductions (BF, done 

with the EMEP model for spatial allocation, and ACT/CHIMERE for sectoral allocation) and 

contribution (tagging, done with LOTOS-EUROS for spatial allocation and within the next 
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phase also for sectoral allocation). The present study demonstrates that integrating the three 

modeling systems into a mini-ensemble is methodologically sound when assessing annual 

mean or primary PM contributions. However, for daily or even hourly attribution of secondary 

PM it is important to consider the purpose of the chosen source attribution method, i.e. tagging 

for the provision of source contributions and brute force based approaches for the provision of 

potential impacts of emission reductions, and use the methods in a complementary way. 

For future evolutions of the service the local fraction is considered as an efficient substitute for 
the brute force method within the EMEP model. The comparisons in this work shows that in 
most cases the differences between those methods is small and such a replacement is 
justified.  

The evaluation of CTM source contributions with PMF data proved challenging due to the 
distinct characteristics of each PMF dataset depending also on user settings (identifying the 
need for harmonisation of PMF applications) and the difficulty to resolve source sectors into 
singular profiles. Such an evaluation requires thorough analysis of the PMF profiles to identify 
its potential match with CTM sources. Furthermore, uncertainties surrounding the PMF profiles 
make it difficult to pinpoint whether the CTM or PMF contribution, or both, require 
improvements. Moreover, the difference spatial representation between the CTMs (area 
average) and the sampling stations remains a challenge. This, together with delays in 
availability of the PMF analysis, prevents its inclusion in automatic CAMS evaluation 
processes. Here, alternatives to total PM source evaluation should be considered such as 
evaluation of EC from biomass and fossil fuels with near real time source contributions from 
aethalometer data as demonstrated in the RI-Urbans project. Another complementary option 
is the use of tracer data from monitoring networks to evaluate the CTM spatial-temporal 
concentration dynamics for certain sources. 

For offline evaluation however such comparisons can be used to gain confidence in models 

and used emission input, but also provides useful information on missing/underestimated/ 

overestimated sources.  
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Appendix A – Annual source contributions to PM2.5 
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Figure A-1. Absolute (µg/m3, left plots) and relative source sector contributions (%, right plots) 
to PM2.5 in Athens, Barcelona, Berlin, Milan, Paris, Oslo, Rotterdam and Warsaw from CHIMERE 
(CHIM), EMEP and LOTOS-EUROS (LE) model using either Brute Force method (_bf), Local 
Fractions (_lf), Tagging (_ts) or Surrogate Modelling with either 15% (_sm15) or 100% (_sm100) 
emission reductions scenarios. Sector categories refer to Table 3-2. 
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Appendix B – Impact of surface layer thickness  

 

  

Figure B-1 Impact of doubling of the surface layer thickness in LOTOS-EUROS to POM 
concentrations in January 2019 (left plot) and orography (right plot) 

 

Figure B-2 Impact of doubling of surface layer thickness in LOTOS-EUROS to total PM10 (left plot) 
and PM10 residential combustion contribution (right plot) in January 2019  
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Appendix C – seasonal variation  

 

Figure C-1 Relative source sector contributions (in %) to PM2.5 in Milan for 
January/February/March (JFM), April/May/June (AMJ), June/August/September (JAS), and 
October/November/December (OND) 

 

 

Figure C-2 Relative source sector contributions (in %) to PM2.5 in Berlin for 
January/February/March (JFM), April/May/June (AMJ), June/August/September (JAS), and 
October/November/December (OND)           
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Appendix D - EBAS Levoglucosan, Vanadium and Nickel tracer data 

 

Table D-1 Overview of tracer data used for evaluation of modelled source contributions. N is 
number of data points in study period. 

Station code Species N 
Sample 

frequency 
(days) 

Station 
typology 

RMSE Correlation 

NO0002R levoglucosan 53 7 rural 0.47 0.71 (r) 

Station code Species N 
Sample 

frequency 
(days) 

Station 
typology 

RMSE Correlation (r) 

CZ0003R vanadium 365 1 Rural 0.33 0.29 

CZ0005R vanadium 182 1 N.S. 0.28 0.28 

DE0001R vanadium 250 1 N.S. 1.21 0.74 

DE0002R vanadium 49 2 Mountain 0.78 0.22 

DE0003R vanadium 53 2 N.S. 0.29 0.13 

DE0007R vanadium 49 7 Coastal 0.63 0.07 

DE0009R vanadium 53 7 N.S. 1.05 0.56 

ES1778R vanadium 53 7 N.S. 1.19 0.69 

FI0018R vanadium 53 7 N.S. 0.26 0.20 

FI0036R vanadium 53 7 Coastal 0.10 0.05 

FI0050R vanadium 52 7 N.S. 0.23 0.32 

GB0048R vanadium 52 7 rural 0.52 0.63 

GB1055R vanadium 52 7 rural 1.08 0.57 

IS0091R vanadium 52 7 rural 0.10 -0.02 

IT0019R vanadium 53 7 N.S. 0.90 0.71 

NO0002R vanadium 53 7 N.S. 0.46 0.65 

NO0047R vanadium 14 8.3 rural 0.07 0.01 

NO0090R vanadium 14 8.3 Rural 0.21 0.32 

Station code Species N 
Sample 

frequency 
(days) 

Station 
Setting 

RMSE Correlation (r) 

SI0008R nickel 74 1 N.S. 1.04 0.14 

CY0002R nickel 338 1 rural 1.21 0.65 

DE0001R nickel 49 7 Coastal 0.77 0.30 
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DE0002R nickel 52 7 N.S. 0.29 0.09 

DE0003R nickel 53 7 N.S. 1.05 0.54 

DE0009R nickel 53 7 N.S. 0.29 0.00 

EE0009R nickel 52 7 N.S. 0.50 0.42 

ES0001R nickel 60 1 rural 0.97 0.31 

ES0007R nickel 60 1 mountain 0.97 0.55 

ES0008R nickel 50 1 coastal 0.34 0.72 

ES0009R nickel 60 1 N.S. 0.93 0.45 

ES0014R nickel 61 1 rural 1.17 0.19 

ES1778R nickel 90 1 N.S. 0.26 0.04 

FI0018R nickel 52 7 N.S. 0.10 0.05 

FI0036R nickel 52 7 rural 0.23 0.25 

FI0050R nickel 52 7 N.S. 1.12 0.60 

GB0013R nickel 14 7.3 N.S. 1.26 0.74 

GB0017R nickel 14 6.3 N.S. 0.52 0.84 

GB0048R nickel 14 8.3 rural 1.08 0.81 

GB1055R nickel 14 8.3 rural 0.90 0.50 

IT0019R nickel 49 2 mountain 1.93 0.20 

NL0008R nickel 176 1 N.S. 0.46 0.60 

NO0002R nickel 52 7 rural 0.07 0.03 

NO0047R nickel 53 7 N.S. 0.21 0.04 

NO0090R nickel 53 2 N.S. 0.07 0.38 

NO0098R nickel 53 7 N.S. 0.33 0.55 
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Appendix E – Data Providers PMF  

The execution of CAMEO Task 6.3 was made possible through the generous contributions of 
PMF data from numerous research institutions across Europe. The provided datasets were 
instrumental in enabling the PMF and CTM comparisons and insights. We acknowledge the 
following contributors: 

• Barcelona & Montseny (Spain): PMF data were provided by the IDAEA-CSIC 
research group (in 't Veld, 2023). 

• Melpitz (Germany): Data from both the research station and the nearby village were 
obtained from Van Pinxteren et al. (2024). 

• Milan (Italy): Data for the Milan station were supplied by the LIFE REMY project 
(manuscript currently unpublished). 

• The Netherlands (Ijmuiden, Beverwijk, Wijk aan Zee): PMF data were kindly 
provided by Mooibroek et al. (2022). 

• Switzerland (Bern, Zurich, Payerne, Basel, Magadino): Data were provided by 
Grange et al. (2021). 

• Germany (Stuttgart, Gärtringen, Freiburg): Data were provided by the 
Landesanstalt für Umwelt Baden-Württemberg (LUBW). More information on the 
method can be found in (Schwarz et al., 2019) 

• Athens (Greece):  Data were provided by EΝvironmental Radioactivity & Aerosol 
technology for atmospheric and Climate impacT (ΕΝRACT) Lab National Centre for 
Scientific Research “Demokritos”; Athens, Greece. Authors: E. Diapouli, M. I. 
Manousakas, V. Vassilatou, S. Papagiannis, S. Vratolis, K. Eleftheriadis 

 

We extend our sincere gratitude to all these institutions and projects for their invaluable 
support. 
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