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1 Executive Summary 

The representation of atmospheric composition through numerical modelling is fraught with 
uncertainties. They arise from various causes: modelling errors originate from representing 
processes in a simplified manner, partially, or not at all, as not all chemical and physical 
processes occurring in the atmosphere are well known or described. Emissions from 
anthropogenic or biogenic sources are hard to estimate and can be another source of 
uncertainty. Finally, many atmospheric composition processes are largely influenced by 
meteorology: most reaction rates depend on temperature, gas-particle partitioning between 
gaseous species and secondary inorganic aerosols depend on temperature and relative 
humidity; emissions of sea-salt and desert dust aerosols depend primarily on wind speed, 
deposition depends on precipitation and wind speed. Uncertainties in atmospheric 
composition modelling thus also result from uncertainties of simulated meteorological fields.  

 

Copernicus Atmosphere Monitoring Service (CAMS) products are subjected from all these 
sources of error and uncertainty. In this deliverable report, we apply an ensemble 
methodology, inspired by and built from the ECMWF meteorological ensemble, to estimate 
the uncertainties of CAMS products, using a configuration close to that of the currently 
operational cycle 49R1. Random perturbations have been applied to different components of 
IFS-COMPO, the atmospheric composition modelling system applied to produce global CAMS 
forecasts, and its inputs. The uncertainties introduced in this way are then propagated in the 
perturbed air quality forecasts, and the ensemblist approach allows to quantify the mean 
uncertainty of the simulated fields through the ensemble spread. The resulting uncertainties 
are presented in this report for a selection of products and time. They also provide a measure 
of how sensitive CAMS products are to errors from different causes (meteorology, emissions, 
modelling errors). These values should be used with care: the presented uncertainties depend 
on a lot of assumptions made about the original uncertainties. For the temporal uncertainties 
of emissions, input from work package 5 was used; for meteorology, we rely on the existing 
perturbation framework of the ECMWF meteorological ensemble, while for modelling 
uncertainties, a set of assumptions were made. Also, the uncertainties presented here are for 
2021; however, it was shown that the uncertainties of CAMS products depend a lot on the 
meteorological and atmospheric composition of the day, which limits the validity and 
usefulness of monthly values. 

For a realistic assessment of uncertainties, a well-balanced ensemble is needed. Well-
balanced in this case means an ensemble that is able to capture the observed variability while 
not producing forecasts that are outside the observational space (over dispersion). A number 
of evaluation tools have been developed in order to produce metrics to show how well-
balanced the ensemble is. Those metrics are commonly used and presented for 
meteorological ensembles; however, their use in atmospheric composition is quite new. Weôll 
present in detail these tools and how they were used. Most of the ensemblist diagnostics 
points to an under-dispersion or too small spread of the ensemble simulations that have been 
performed. In some cases (PM2.5 and surface ozone), this appears to be largely a 
consequence of model biases, which makes it harder for the ensemble to capture the 
observational variability. This is also a sign that perhaps the perturbations applied are too 
small or donôt explore enough degree of freedom, such as correlated perturbations, or 
perturbations varying with forecast time. 

The propagation and relative importance of the different sources of uncertainties vary a lot 
depending on the species considered. In general, anthropogenic emissions was found to have 
a relatively smaller impact on the uncertainty of AOD and surface ozone than other factors, 
while for PM, the impact of emissions is quite significant. For all parameters, meteorological 
and model uncertainties are the highest source of uncertainty. 
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Finally, the work presented in this deliverable can be seen as an early prototype of a global 
atmospheric composition ensemble. While the computing costs of such an ensemble 
approach are very large, the expected benefits are also significant in terms of the forecast 
skills, as shown by the regional CAMS ensemble. Such an ensemble could also provide an 
online estimate of atmospheric composition forecast uncertainties, as well as extreme 
scenarios. 
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2 Introduction 

2.1 Background 

Monitoring the composition of the atmosphere is a key objective of the European Unionôs 
flagship Space programme Copernicus, with the Copernicus Atmosphere Monitoring Service 
(CAMS) providing free and continuous data and information on atmospheric composition.  

The CAMS Service Evolution (CAMEO) project will enhance the quality and efficiency of the 
CAMS service and help CAMS to better respond to policy needs such as air pollution and 
greenhouse gases monitoring, the fulfilment of sustainable development goals, and 
sustainable and clean energy.  

CAMEO will help prepare CAMS for the uptake of forthcoming satellite data, including 
Sentinel-4, -5 and 3MI, and advance the aerosol and trace gas data assimilation methods and 
inversion capacity of the global and regional CAMS production systems.  

CAMEO will develop methods to provide uncertainty information about CAMS products, in 
particular for emissions, policy, solar radiation and deposition products in response to 
prominent requests from current CAMS users.  

CAMEO will contribute to the medium- to long-term evolution of the CAMS production systems 
and products.  

The transfer of developments from CAMEO into subsequent improvements of CAMS 
operational service elements is a main driver for the project and is the main pathway to impact 
for CAMEO.  

The CAMEO consortium, led by ECMWF, the entity entrusted to operate CAMS, includes 
several CAMS partners thus allowing CAMEO developments to be carried out directly within 
the CAMS production systems and facilitating the transition of CAMEO results to future 
upgrades of the CAMS service.  

This will maximise the impact and outcomes of CAMEO as it can make full use of the existing 
CAMS infrastructure for data sharing, data delivery and communication, thus supporting 
policymakers, business and citizens with enhanced atmospheric environmental information. 

 

2.2 Scope of this deliverable 

2.2.1 Objectives of this deliverable 

In this deliverable an atmospheric composition ensemble has been developed, evaluated and 
used to provide quantitative estimates of the uncertainties of CAMS products. 

2.2.2 Work performed in this deliverable 

In this deliverable the work as planned in the Description of Action (DoA, WP6 T6.4.1, 6.4.2 
and 6.4.3) was performed. 

2.2.3 Deviations and counter measures 

No deviations have been encountered. 
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2.2.4 CAMEO Project Partners: 

 

ECMWF EUROPEAN CENTRE FOR MEDIUM-RANGE WEATHER 
FORECASTS 

Met Norway METEOROLOGISK INSTITUTT 

BSC BARCELONA SUPERCOMPUTING CENTER-CENTRO 
NACIONAL DE SUPERCOMPUTACION 

KNMI KONINKLIJK NEDERLANDS METEOROLOGISCH INSTITUUT-
KNMi 

SMHI SVERIGES METEOROLOGISKA OCH HYDROLOGISKA 
INSTITUT 

BIRA-IASB INSTITUT ROYAL D'AERONOMIE SPATIALEDE 

BELGIQUE 

HYGEOS HYGEOS SARL 

FMI ILMATIETEEN LAITOS 

DLR DEUTSCHES ZENTRUM FUR LUFT - UND RAUMFAHRT EV 

ARMINES ASSOCIATION POUR LA RECHERCHE ET LE 
DEVELOPPEMENT DES METHODES ET PROCESSUS 
INDUSTRIELS 

CNRS CENTRE NATIONAL DE LA RECHERCHE SCIENTIFIQUE 
CNRS 

GRASP-SAS GENERALIZED RETRIEVAL OF ATMOSPHERE AND 
SURFACE PROPERTIES EN ABREGE GRASP 

CU UNIVERZITA KARLOVA 

CEA COMMISSARIAT A L ENERGIE ATOMIQUE ET AUX 
ENERGIES ALTERNATIVES 

MF METEO-FRANCE 

TNO NEDERLANDSE ORGANISATIE VOOR TOEGEPAST 
NATUURWETENSCHAPPELIJK ONDERZOEK TNO 

INERIS INSTITUT NATIONAL DE L ENVIRONNEMENT INDUSTRIEL 
ET DES RISQUES - INERIS 

IOS-PIB INSTYTUT OCHRONY SRODOWISKA - PANSTWOWY 
INSTYTUT BADAWCZY 

FZJ FORSCHUNGSZENTRUM JULICH GMBH 

AU AARHUS UNIVERSITET 

ENEA AGENZIA NAZIONALE PER LE NUOVE TECNOLOGIE, 
L'ENERGIA E LO SVILUPPO ECONOMICO SOSTENIBILE 
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3 Implementation of a global atmospheric composition ensemble 
forecasting system 

ECMWF is producing ensemble weather forecasts since 1992. An ensemble weather forecast 
is a set of forecasts that present the range of future weather possibilities. Multiple simulations 
are run, each with a slight variation of its initial conditions and with slightly perturbed weather 
models (Figure 1). These variations represent the inevitable uncertainty in the initial conditions 
and approximations in the models. They produce a range of possible weather conditions. Here 
we would like to extend the existing weather ensemble to atmospheric composition, by using 
the IFS-COMPO (Integrated Forecasting System with atmospheric composition extensions) 
instead of IFS in the existing ensemble architecture, and by introducing optional perturbations 
of initial conditions, emissions and model processes that are specific to atmospheric 
composition, and aim to represent the impact of uncertainties not related to meteorology. 

 

 

 

Figure 1: Schematic showing the principles of ensemble forecast. 

Several atmospheric composition ensembles are currently operationally active; some of 
them multi model, and some of them with a single model, namely: 

¶ The CAMS regional ensemble with 11 models over Europe, 

¶ The MERRA2-AMIP dataset, which consists of a 10-member ensemble of free-

running simulations with the GEOS atmospheric model. The model version, along 

with imposed boundary conditions, is configured identically to the GEOS model used 

in the MERRA-2 reanalysis dataset. The MERRA2-AMIP dataset supplements the 

MERRA-2 reanalysis, providing a suite of model simulations that are identical to the 

analyses, with the exception that they do not ingest the observations. The 10-

member ensemble provides information on the natural variations inherent in any 

free-running model simulation. 

¶ The ICAP (International Cooperative for Aerosol Prediction) Multi Model Ensemble 

(ICAP-MME, Sessions et al, 2015, Xian et al 2019), which includes 9 operational 

global atmospheric composition forecasting systems including CAMS and GEOS-5, 

NAAPS, MASINGAR, NGAC, MOCAGE, SILAM, and two dust-only global models: 

BSC MONARCH (former BSC-CTM) and UKMO Unified Model. 

¶ The WMO SDS-WAS dust ensemble (https://dust.aemet.es/) which provides in near-

real time dust related products from 13 models: CAMS, BSC-MONARCH, DREAM8, 

https://dust.aemet.es/
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NASA-GEOS, MetOffice-UM, NCEP-GEFS, EMA-RegCM4, SILAM, LOTOS-

EUROS, ICON-ART, NOA-WRF-CHEM, ZAMG-WRF-CHEM and MOCAGE. 

 

The evaluations carried out of the ensemble products from the CAMS regional ensemble, 
the SDS-WAS and the ICAP-MME ensembles all show that products from the multi  model 
ensemble outperform all the deterministic forecasts that compose the ensemble. In the work 
shown here, multi model ensemble is impossible to implement as we use only the IFS-
COMPO atmospheric composition forecasting system. However, we ambition to emulate a 
multi model approach by adding stochastics perturbations of relevant model 
parameterizations. 

 

3.1 Description 

 

The IFS-COMPO ensemble are built on the NWP ensemble in a cycle 48R1 configuration: 
they include a single control or unperturbed run, and 50 perturbed members. The ensemble 
uses an analysis field as initial conditions, so including aerosol and chemistry data 
assimilation. The perturbations applied to the meteorological fields are those of the IFS 
meteorological ensemble, described in the cycle 48R1 documentation 
(https://www.ecmwf.int/en/elibrary/81371-ifs-documentation-cy48r1-part-v-ensemble-
prediction-system). They consist of perturbations of the meteorological initial conditions, which 
are provided from an ensemble of data assimilations (EDA), and perturbations constructed 
from the leading singular vectors. Model uncertainties are represented in the meteorological 
ensemble with the Stochastically Perturbed Parameterization Tendencies scheme (SPPT). It 
simulates the effect on forecast uncertainty of random model errors due to the parametrized 
physical processes. The scheme perturbs the meteorological tendencies by terms that are 
given by a random pattern, times the net parameterized physics tendencies, less the 
diagnosed clear-sky heating rate. The random pattern varies horizontally and with time; each 
ensemble member uses a different realisation of the random pattern. On top of the 
meteorological perturbations, the following set of perturbations have been implemented: 

¶ Perturbations of the initial conditions of all aerosol and selected (carbon monoxide, 

ozone, sulphur dioxide and nitrogen dioxide) chemistry tracers in the troposphere  

¶ Perturbation of the inputs of the dust emission scheme: dust source function (DSF), 

sand/silt/clay fraction of the soil used for dust emissions and assumed size 

distribution at emissions 

¶ Perturbation of the anthropogenic emission inputs of IFS-COMPO 

¶ Perturbation of atmospheric composition specific model parameterizations: 

o Computation of dry deposition velocity 

o Rates of chemical reactions 

o Photolysis rates 

o Wet deposition and re-evaporation rates 

o Production rate of sulphate and nitrate aerosols 

o Production rate of secondary organic aerosols 

 

Ensemble simulations can be carried out using all or a selection of the perturbations presented 
above. Also, we developed the possibility to run ensemble simulations without perturbations 
of meteorological initial conditions and parameterizations, so as to allow to assess the impact 
of the uncertainties of atmospheric composition specific inputs and processes. It should be 
noted that perturbations of different input/parameterizations are assumed to be 
uncorrelated, and perturbations are supposed to be constant for all forecasts time, 
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which is a strong (and probably wrong) assumption. The perturbations themselves consist of 
2D fields that represent correlated gaussian noise, computed using a given correlation length 
and standard deviation. They are computed on-the fly using a python script that is called in 
the IFS-COMPO scripts, and are applied to each relevant model input (emissions, initial 
conditions, etc.). For the model parameterizations, two such stochastic perturbations are 
computed, loaded into IFS-COMPO, and used in the IFS-COMPO Fortran code to scale the 
output of the parameterizations listed above. Figure 2 shows an example of such a 
perturbation. 

 

 

 

Figure 2: Example of a perturbation scaling factor generated with a correlation length of 500km 
and a standard deviation of 0.5. 

Table 1 lists the specifics of the perturbations applied to the atmospheric composition initial 
conditions, the inputs of the dust emission scheme and the model parameterizations. These 
values have been obtained by evaluating how dispersive the ensemble is, depending on the 
specifics of the input perturbations. For the initial conditions, it was found that higher standard 
deviations could make ensemble simulations over dispersive for long lived species, such as 
carbon monoxide and ozone, and much lower values have been used for later simulations. 

Table 1: Standard deviation and correlation length of the random perturbations applied to 
different inputs and parameterizations of the IFS-COMPO ensemble 

Perturbed field Standard deviation Correlation length 

Aerosol initial conditions 0.25 500 

CO initial conditions 0.04 500 

O3 initial conditions 0.07 500 

NO2 initial conditions 0.125 500 

SO2 initial conditions 0.19 500 

Model parameterizations 0.5 500 

Inputs of the dust emission scheme 0.5 500 

 

Simulations have been carried out with correlation lengths varying between 250 and 2000km. 
The impact on the ensemble spread, averaged monthly and over the globe, was found to be 
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very small. Those runs led to the selection of correlation lengths presented in Table 1. A 
special treatment has been implemented for the perturbation of emission input, detailed in the 
next subsection. 

 

3.1.1 Perturbation of emission input 

 

For emissions, sectoral perturbations are used, i.e., the perturbations are the same for the 
emissions of all the species of a given emission sector. 

Work package 5 delivered at the end of May 2024 estimates of the temporal uncertainties of 
anthropogenic emissions. For more details on how these estimates were computed, please 
refer to deliverable D5.1. These consist of global values representing the standard deviation 
for each hour for the diurnal cycle uncertainties, and gridded monthly standard deviation to 
represent the uncertainty of the seasonal cycle. These two sets of standard deviations are 
provided for each emission sector. An example of the monthly standard deviation is shown in 
Figure 3 for the energy sector. 

  

Figure 3: Standard deviation in emissions from the energy sector, January (left) and July (right). 

Following the advice of the WP5 leader, the maximum value of the uncertainty standard 
deviation of the diurnal cycle was used. The values are summarized in Table 2. 

 

Table 2: Standard deviation of the uncertainty of anthropogenic emissions, per sector. 

Sector Standard deviation 

Ind 0.15 

Res 0.487 

Agl 0.451 

Awb 1.233 

Ags 0.451 

Ene 0.063 

Tro 0.397 

Fef 0.25 

Slv 0.375 

Tnr 0.469 

Swd 0.25 
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Shp 0.25 

 

 

These values are used, with a correlation length of 500km, to generate perturbation files. On 
top of this, the gridded monthly values are used to modulate the perturbations, by scaling the 
perturbation over each grid cell by the gridded monthly value divided by the spatial average of 
the gridded monthly value. An example is shown in Figure 4, for the energy sector in January. 
The higher perturbations over Iceland and Estonia/Latvia correspond to areas where the 
gridded values that represent the seasonal uncertainty spread for this month are the highest, 
as shown in Figure 3.  

 

 

Figure 4: Example of a perturbation scaling factor for emissions from the energy sector in 
January. 

The perturbations of emissions computed following this methodology only represent the 
temporal uncertainties as provided by WP5. They donôt include other aspects of emissions 
uncertainties, relating to activity data used to compute the emissions, conversion factors etc. 
is not taken into account, which means that it is very possible that the emissions uncertainties, 
as represented by the estimated perturbations are underestimated. 

3.2 Experiments 

 

A number of experiments have been carried out in order to evaluate and adjust the 
perturbations applied to initial conditions, emissions and model  parameterizations, which are 
not shown here. The ensemble simulations use initial conditions (before perturbation) from 
analysis simulations from cycle 48R1 for the year 2021. They use a cycle 48R1 branch, which 
includes modelling updates for cycle 49R1. As such, the uncertainties shown are 
representative of the uncertainties of the official cycle 49R1 products, but for the year 2021. 

The experiment specifics are the following: 

¶ TL255L137 resolution (80km grid cell) 

¶ 120h maximum forecast time, output every 12 hours 

¶ Simulated year 2021 

¶ Use of CAMS_GLOB_BIOv3.1 and CAMS_GLOB_ANT v5.3 emissions 
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Because of the high computing costs of the IFS-COMPO ensemble experiments, most of them 
didnôt complete the year 2021. We chose to show results for experiments that perturb only 
meteorological fields, only anthropogenic emissions, only model parameterizations, and all 
uncertainties combined. The EMI_OLD and EMI_OLD2 are experiments that tested different 
perturbations of the anthropogenic emission inputs, before the uncertainty estimates of WP5 
became available. The experiments are listed in Table 3.  

 

 

Table 3: IFS-COMPO ensemble experiments shown in this report 

Experiment Characteristics 

MET Perturbations of meteorological initial conditions and processes 

EMI Perturbations of anthropogenic emissions input only, using WP5 
input 

EMI_OLD Perturbations of anthropogenic emissions input only, using 0.25 
standard deviation and 500km length scale. 

EMI_OLD2 Perturbations of anthropogenic emissions input only, using 0.5 
standard deviation and 500km length scale. 

MODEL Perturbation of atmospheric composition model parameterizations 
only 

ALL All perturbation applied: 

¶ Meteorological initial conditions and processes 

¶ Atmospheric composition initial conditions 

¶ Atmospheric composition model parameterizations 

¶ Inputs of the dust emission scheme 

¶ Anthropogenic emission input using WP5 input 

ALL_NOMODEL All perturbations applied except model parameterizations 

INI Perturbation of atmospheric composition initial conditions only 
 

 

Experiments will be shown in the following sections based on their relevance, not all 
experiments will be included. In particular, the estimated uncertainty will be shown for MET, 
EMI, MODEL and ALL. 
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4 Evaluation of the ensemble forecasts 

The raw ensemblist forecasts look like the stamp plot shown in Figure 5, which shows how a 
situation with high PM10 from a desert dust plume over South of France and Northern Italy is 
simulated by an IFS-COMPO ensemble simulation. These plots include a lot of information; 
however, it can be hard to compare simulations from one ensemble against another, or even 
two different simulations of the same ensemble. To do this, metrics that incorporate 
information from all ensemble members are needed, such as the ensemble standard deviation 
or spread and ensemble median. Examples of these two quantities are shown in Figure 6 for 
surface ozone from two IFS-COMPO ensembles: MET and ALL, for a single day that saw high 
ozone concentrations over most of Europe. The ensemble median is very similar for the two 
experiments, with an area of values above 100 ɛg/m3 that covers most of Western Europe. 
The spread of MET is relatively small, between 2 and 5 ɛg/m3 in general, which shows that 
the meteorological perturbations have relatively little impact on simulated ozone on that day. 
The spread is significantly higher for ALL, with values generally between 10 and 15 ɛg/m3 over 
most of Europe. 

 

 

Figure 5: Simulated PM10 at 24h forecast time over Western Europe, simulation starting on 
6/2/2021, IFS-COMPO ensemble perturbing meteorology only.  
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Figure 6: IFS-COMPO ensembles MET (top) and ALL (bottom), surface ozone at 36h forecast, 
run starting on 15/6/2021. Ensemble median (left) and standard deviation/spread (right).  

 

Comparing the spread of two ensemble simulations is a good way to assess how sensitive the 
model is to perturbations of each kind of input. However, this doesnôt give any information if 
the spread is ñtoo lowò or ñtoo highò. For this, skill scores that involve observational datasets 
are required. We implemented two different metrics  

¶ A comparison of ensemble spread and the root mean square error (RMSE) of the 

ensemble mean, 

¶ Rank histograms (Talagrand diagrams), 

¶ Comparison of simulated and observed probability density functions. 

 

It is common to assess the skill of an ensemble by comparing the ensemble mean RMSE and 
the ensemble standard deviation (ensemble spread). The former measures how accurate the 
ensemble mean is, i.e. how near the mean of the ensemble forecasts is to analysis fields or 
observations; the latter verifies whether the ensemble forecasts simulated a wide enough 
range of possible atmospheric states to reflect the error characteristics of the ensemble mean. 
Ideally, one would want the ensemble mean RMSE to be as small as possible and the spread 
to be equal to the ensemble mean RMSE on average over many cases. 

For the verification of ensemble forecasts the Rank histograms (also called Talagrand 
diagrams) are widely used. This type of diagram shows how often observations match different 
parts of an ensemble forecast distribution. To this end, the ensemble forecast distribution is 
divided into bins of equal size, matching the ensemble size (or number of members), for 
example going from low predicted to high predicted AOD at 550nm. The observations are then 
put in the appropriate bins forming a histogram. In a reliable ensemble forecast, the frequency 

Ens median Ens stdev 

MET 

ALL 
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of observations in each bin will be  identical since each part of the ensemble forecast 
distribution is equally likely. Figure 7 show three examples of simulated and observed 
probability distributions along with rank histograms. When the ensemble is well balanced, the 
rank histogram is roughly flat. High values at the extremes diagnose an ensemble with too 
little spread, also called under dispersive. A biased ensemble will show a slope. Finally, an 
over-dispersive ensemble (not shown) will show high values in the middle ranks, and null or 
lower values at the extremes. 

 

 

 

 

Figure 7: Three examples of probability distribution and rank histograms, showing well balanced 
(top row), under-dispersive (middle row) and biased situations (bottom row).  

 

This ensembles scores can be computed using either an observational dataset, or against 
their own analysis. Each approach has its benefits and drawbacks. Using the ensemble 
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analysis for verification is more adequate for assimilated quantities (such as AOD) than for 
non assimilated species, as the analysis is then deemed more reliable. Using this method for 
PM2.5 or surface ozone for example is not advised (at least as long as they are not 
assimilated), as the link between the analysis and observations is indirect in the global CAMS 
system. Using its own analysis for verification is also very convenient because the model 
space and the observation space are the same; there are no resolution or representativeness 
issues. Verification against observational datasets offer a better reference than against own 
analysis; however, the data can be sparse and there can be representativeness issues 
between observation and model. In this section, we present rank histograms computed against 
both observational datasets and own analysis. 

 

 

4.1 Rank histograms (Talagrand diagrams) 

 

4.1.1 AOD at 550nm 

Figure 9 shows the observed and simulated frequency distribution, a rank histogram and a 
time series of observed versus simulated Aerosol Optical Depth (AOD) at 500nm for the ALL 
experiment in February 2021, for a 120h forecast time. The evaluation is done against all 
AERONET level 2 data available in February 2021. The AERONET network is shown in Figure 
8. 

 

Figure 8: AERONET level 2 AOD at 500nm in the summer of 2020, values and sample size.  

 

The rank histogram shows that for AOD and this experiment, the IFS-COMPO ensemble is 
clearly under dispersive: a significant amount of observations falls outside of the 50 members 
and are above the maximum values out of the 50 members (high value for entry 50 in the X 
axis). This is also shown by the lower ensemble standard deviation (0.15) as compared to the 
observation standard deviation (0.19). The ensemble suffers also from a negative bias, which 
is also apparent in the time series: both the control and ensemble mean are most of the time 
below the observational average because of a persistent low bias of the control run over the 
considered period. As such, the low bias shown here is rather a consequence of inherent 
model bias, also present in the control run. However, the ALL experiment lacks the ability to 
represent a significant fraction of the observed space for AOD at 550nm. 
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Figure 9: ALL experiment, February 2021, 120h forecast time, evaluation of AOD at 550nm versus 
all AERONET level 2 observational data. Top left, frequency distribution; top right, rank 
histogram. Bottom, time series of daily observed mean AOD at 550nm averaged over all 
AERONET stations together with the ensemble mean and median and values simulated by the 
control run. The ensemble 20% and 80% centiles as well as the envelope are shown. 

 

Figure 10 shows a similar global evaluation of a series of IFS-COMPO ensemble simulations 
against their own analysis, for AOD at 550nm simulated at 120h forecast time. The diagnostic 
is similar to that reached against AERONET: all of the ensembles are more or less under 
dispersive for AOD. However, at the global scale, there is no sign of a positive or negative 
bias (this is not the case for the regional evaluation, not shown). The EMI and INI experiments 
are significantly more under dispersive than the MET one, showing that for AOD, the 
perturbations applied to the atmospheric composition initial conditions as well as 
anthropogenic emissions yield relatively little ensemble spread. The ALL_NOMODEL 
experiment is slightly less under dispersive than MET, but by a small margin: this shows that 
meteorological perturbations have the largest impact on ensemble spread for AOD 
(perturbations of the atmospheric composition model parameterizations were not evaluated). 
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Figure 10: January 2021, 120h forecast time, evaluation of AOD at 550nm versus own analysis. 
Rank histogram of MET (grey), ALL_NOMODEL (blue), EMI (red), and  INI (green). 

 

 

4.1.2 PM2.5 

 

Rank histograms have been built also for PM2.5 against European airbase/EEA stations, for 
simulated PM2.5 at 120h forecast time in February 2021 by the MODEL and ALL experiments 
(Figure 11). The two experiments are under-dispersive and negatively biased, although the 
under-dispersion is less pronounced for the ALL experiment. This negative bias is very 
apparent in the time series, which shows that up to 20/21 February, the control run and 
ensemble mean PM2.5 are significantly lower than the observational average. The MODEL 
experiment struggles to reach observed values even for the maximum ensemble values, while 
the ALL experiment sometimes manages to reach the observed value. The period 20-25 
February 2021 was marked by a combined pollution and dust intrusion event over most of 
Western and Central Europe, which is reflected in the higher observed average PM2.5. The 
simulated values are less impacted by a low bias during this period. 
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Figure 11: Top, rank histograms of MODEL experiment (left) and ALL experiment (right), 
February 2021, 120h forecast time, evaluation of PM2.5 versus all available airbase/EEA data 
over Europe. Bottom, time series of daily observed mean PM2.5 in February 2021 over European 
stations together with the ensemble mean and median and values simulated by the control run. 
The ensemble 20% and 80% centiles as well as the envelope are shown. 

 

 

4.1.3 Surface ozone 

For surface ozone, we focus on June 2021, a month that saw a short heat wave between 15-
17 June and an associated surface ozone peak. In order to better assess the representation 
of the diurnal ozone peak, a forecast time of 108h instead of 120h is considered in this 
subsection. Figure 12 show frequency distributions and rank histograms for the MET, MODEL 
and ALL experiments, and Figure 13 show time series of simulated versus observed daily 
surface ozone averaged over all airbase/EEA stations. Similarly to AOD at 550nm and PM2.5, 
all experiments show under-dispersion and, to varying degrees, a low bias in surface ozone. 
This arises from a negative bias in the control run up to 20th of June around as shown in Figure 
10. In particular, the ozone peaks of the first half of June are generally significantly 
underestimated. The meteorological perturbations bring relatively little spread in the time 
series; the perturbations of the model parameterizations have a slightly higher impact on 
ensemble spread, with a mean ensemble standard deviation of 17.3 versus 16.7 for 
meteorological perturbations (the observational standard deviation is 26.1). The ALL 
ensemble is still under-dispersive and low biased, but to a lesser extent, with a mean 
ensemble spread of 18.0. 



CAMEO  
 

D6.4 Uncertainty of global CAMS products  20 

 

 

 

Figure 12: MET (top), MODEL (middle) and ALL (bottom) experiments, frequency distribution 
(left) and rank histograms of simulated surface ozone, June 2021, 108h forecast time, evaluation 
versus all available airbase/EEA data over Europe.  
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Figure 13: MET (top), MODEL (middle) and ALL (bottom) experiments, time series of daily 
observed mean surface ozone in June 2021 over European stations together with the ensemble 
mean and median and values simulated by the control run. The ensemble 20% and 80% centiles 
as well as the envelope are shown. 

To summarize, it appears that most of the ensemblist diagnostics points to an under-
dispersion or too small spread. In some cases (PM2.5 and surface ozone), this appears to be 
largely a consequence of model biases, which makes it harder for the ensemble to capture 
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the observational variability. This is also a sign that perhaps the perturbations applied are too 
small or donôt explore enough degree of freedom, such as correlated perturbations, or 
perturbations varying with forecast time. 

 

5 Uncertainties of selected CAMS products 

In this section, we present monthly average standard deviation and relative standard deviation 
(normalized by the ensemble mean value) of IFS-COMPO ensembles MET, EMI, MODEL and 
ALL. The standard deviation, or ensemble spread, is taken as a measure of the uncertainty of 
the simulated products. Other measures are possible, such as the difference between the 25 
and 75% percentiles. 

5.1 Monthly values 

In this subsection we show the simulated uncertainty of AOD at 550nm, dust AOD at 550nm, 
PM2.5, PM10 and surface ozone averaged over January and June 2021. We chose to show 
monthly values, as the daily variability is very high. The values shown in these two months are 
different for absolute spread, but not to a very large extent for relative spread, and other 
months (not shown) show values in the same range. For relative spread Thus, the results 
shown here can qualitatively be extended to other months as far as relative spread is 
concerned. 

5.1.1 AOD at 550nm 

 

Figures 14, 15, 16 show the ensemble spread and relative spread of the MET, EMI, MODEL 
and ALL experiments, for January 2021 and for 24 and 120h forecast time, and for June 2021 
only 120h forecast time except for EMI for which data is incomplete in June. For AOD at 550nm 
and 24h forecast, the uncertainty caused by meteorological factors and model perturbations 
is much higher than that from the emissions. The relative spread is generally comprised 
between 5 and 15% (higher over dust source regions for MODEL) for these two experiments, 
and is generally below 5% for EMI. The ALL experiment shows quite homogeneous spread of 
15-25% almost everywhere. Over oceans this could be caused partly by the perturbations in 
initial conditions. 

The uncertainty of simulated AOD at 550nm is unsurprisingly much higher for 120h forecasts, 
with values between 10 (over oceans) to more than 30% for MET and MODEL, while EMI 
perturbations are generally between 5 and 15% over continents (closer to emission sources) 
and less over most of the oceans. The very high relative spread over boreal regions 
correspond to areas with relatively small absolute spread, indicating that the small value of 
the ensemble mean contributes to the high value of the relative uncertainty. Also, 
meteorological perturbations could result in the transport of higher AOD values over areas 
with relatively low AOD, which mechanically provokes a very high relative spread. Also, it is 
clear that the propagation of uncertainties through the IFS-COMPO ensemble is a very non-
linear phenomenon: the spread of ALL is smaller than the sum of the spread of MET, MODEL, 
EMI (and the other contributions such as the initial conditions perturbations which play a 
smaller role at 120h forecast time than at 24h). 

In June 2021, the absolute uncertainty is much higher than in January, mostly because 
simulated AOD at 550nm is higher over many regions. The relative spread is quite similar to 
that of January for MODEL, but higher over many regions including Europe for MET. 
Interestingly, the spread of ALL is smaller than that of MET over several regions, such as over 
parts of China and Europe. Meteorological and model perturbations (particularly the 
perturbations impacting emissions of sea-salt aerosols and desert dust, and wet deposition) 
could partly cancel each other out. 
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Figure 14: Spread (left) and relative spread (right) of the MET, EMI, MODEL and ALL experiments 
for simulated AOD at 550nm in January 2021, at 24h forecast time. 
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Figure 15: Spread (left) and relative spread (right) of the MET, EMI, MODEL and ALL experiments 
for simulated AOD at 550nm in January 2021, at 120h forecast time. 
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Figure 16: Spread (left) and relative spread (right) of the MET, MODEL and ALL experiments for 
simulated AOD at 550nm in June 2021, at 120h forecast time. 

 

5.1.1 Dust AOD at 550nm 

For dust AOD at 550nm (Figures 17 and 18) the EMI experiment is not shown, as its impact 
is quite small. Also, only June 2021 is shown, as desert dust sources are much more active 
than in January 2021. At 24h forecast time (Figure 17), the MET and MODEL absolute spread 
show different patterns: high values localized over dust source regions for MODEL arising 
from perturbations of the dust emissions, and high values over all Sahara/Middle East for 
MET. The relative spread also shows the impact of the wet deposition perturbation for MODEL 
(the higher values around the ITCZ. For MET, the relative spread is generally higher than for 
MODEL, which is also because MET perturbs the meteorological initial conditions, which 
perturbs in turn transport, emissions and deposition very quickly after the beginning of the 
simulation. At 120h forecast time, MET shows very high values over most of regions that are 
very remote from dust source regions, for the same reason as explained above: MET is the 
only experiment that perturbs transport processes, which means that relatively high values of 
dust AOD could be transported over areas where the ensemble mean is small, resulting in 
very high relative spread, while the absolute spread is not remarkable. The spread of MODEL 
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MODEL spread MODEL rel spread 

ALL spread ALL rel spread 
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is much higher everywhere at 120h than at 24h. The spread of ALL at 120h forecast time is 
again smaller than that of MET over several regions. 

 

 

 

 

 

 

 

Figure 17: Spread (left) and relative spread (right) of the MET, MODEL and ALL experiments for 
simulated dust AOD at 550nm in June 2021, at 24h forecast time. 
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Figure 18: Spread (left) and relative spread (right) of the MET, MODEL and ALL experiments for 
simulated dust AOD at 550nm in June 2021, at 120h forecast time. 

5.1.2 PM2.5 

 

Figures 19, 20 and 21 show the ensemble spread and relative spread of PM2.5 simulated by 
the MET, EMI, MODEL and ALL experiments, for January 2021 and for 24 and 120h forecast 
time, and for June 2021 only at 120h forecast time except for EMI for which data is not fully 
available in June. The patterns are quite different from the ones shown for AOD. In January 
2021 and at 24h forecast time, the uncertainty is much higher with MODEL over oceans as 
compared to MET and EMI, while over continents the uncertainties of MODEL and MET are 
close. For EMI, the values are much higher than those calculated  for AOD, with uncertainties 
at 24h forecast time of around 10-15% over many regions with high anthropogenic emissions. 
The relative uncertainty of PM2.5 arising from model errors is generally between 20 and 25% 
already at 24h forecast time, higher than those calculated for AOD. For MET, the values are 
between 5% (over oceans) and 15-20% over most continent. As for AOD, the increase of the 
absolute and relative uncertainty is significant at 120h forecast time compared to 24h values. 
For EMI, most of the large  anthropogenic sources and adjacent areas see uncertainties of 
around 20%. The uncertainty of MODEL is often higher than that of MET, particularly over 
oceans, with 20-30% values against 10-25% for MET. The uncertainty of ALL is significantly 
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MODEL spread MODEL rel spread 

ALL spread ALL rel spread 
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higher than that of MET or MODEL, with values between 30 and 60% over many continental 
areas except equatorial areas where the uncertainty is around 20%. The relative spread is 
quite similar for all experiments between January and June. 

 

 

 

 

 

 

 

Figure 19: Spread (left) and relative spread (right) of the MET, EMI, MODEL and ALL experiments 
for simulated PM2.5 in January 2021, at 24h forecast time. 

 

MET spread 
MET rel. spread 

EMI spread EMI rel spread 

MODEL spread MODEL rel spread 

ALL spread ALL rel spread 


























