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1 Executive Summary 

CAMEO objectives are to improve the knowledge on the error structures of the CAMS 
Radiation Service (CRS) and to provide individual time series accuracy information as new 
and additional information to the CRS users.  

In this study, a detailed database of ground stations with the three irradiance component 
observations (global, beam and diffuse) was created and quality controlled. It is the basis of a 
systematic error assessment and the generation of 2 uncertainty error models, one based on 
a parametric binning approach and the other one on a machine learning approach. The error 
predictor space of both approaches consists of the clear and all-sky radiation parameters, 
atmospheric composition parameters, cloud properties, albedo model parameters and solar 
geometry. Following the results of the SHAP (Shapley Additive exPlanations) study, as 
reported previously in D4.3, the selection of initial predictors used in the training of the error 
models follows the priority listing as provided by the SHAP analysis.  

Preliminary tests were conducted to evaluate the two approaches to model the uncertainty of 
CRS. The first results are very encouraging. Both probabilistic models seem to be well 
calibrated and capture very well the bias of CRS in the different tests considered.  

On the parametric binning-based model, the stations known to be difficult to model for the 
CRS showed the worst calibration and sharpness, which is a reasonable and expected result. 
The error model was tested to infer the uncertainty distributions on time series outputs on 
many days/stations which included all types of sky conditions (clear, overcasted, cloudy). For 
all cases tested, the width of the confidence intervals correlated well with the local variability 
situation, i.e., narrow intervals on clear and overcasted situations and wider intervals variable 
situations.  

The deep learning-based model was found perfectly calibrated when tested on the same 
stations that were used for the training, but a significant decrease in accuracy is observed 
when the model is applied to stations that were not used for training. A conditional evaluation 
indicates that in the latter case, the model is over-dispersive at low values of the clearsky 
index and under-dispersive at high values of the clearsky index. This lack of spatial 
generalisation can be attributed to an overtraining issue. Further experiments will be 
conducted with a smaller network and more data to address this issue. 

A significant achievement of our work is the development (for the first-time) of a detailed 
localised error model of the CAMS radiation service. It allows the integration of new quality 
information for users on each individual datapoint as well as the detailed monitoring of any 
service evolution activities. 
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List of abbreviations 

 

Abbreviation Definition  

AOD Aerosol Optical Depth 

BHI Beam Horizontal Irradiance 

BNI Beam Normal Irradiance 

CAMEO CAMs EvOlution 

CAMS Copernicus Atmosphere Monitoring Service 

CFD Cumulated Distribution Function 

CRPS Continuous Ranked Probability Score 

CRS CAMS Radiation Service 

DHI Diffuse Horizontal Irradiance 

ECE Expected Calibration Error 

ECMWF European Centre for Medium-range Weather 
Forecasts 

FOV Field Of View 

GHI Global Horizontal Irradiance 

LUT Look-Up-Table 

MAE Mean Absolute Error 

MBE Mean Bias Error 

MPSD Mean Predictive Standard Deviation 

MSG Meteosat Second Generation 

PICP Prediction Interval Coverage Probability 

PINAW Prediction Interval Normalized Averaged Width 

RMSE Root Mean Square Error 

SAA Solar Azimuth Angle 

SHAP SHapley Additive exPlanations)  

STDE STandard Deviation Error 

SZA Solar Zenith Angle 

tc03 Total Column of O3 

tcwv Total Column of Water Vapor 
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2 Introduction 

2.1 Background 

Monitoring the composition of the atmosphere is a key objective of the European Union’s 
flagship Space programme Copernicus, with the Copernicus Atmosphere Monitoring Service 
(CAMS) providing free and continuous data and information on atmospheric composition.  

The CAMS Service Evolution (CAMEO) project aims at enhancing the quality and efficiency 
of the CAMS service and help CAMS to better respond to policy needs such as air pollution 
and greenhouse gases monitoring, the fulfilment of sustainable development goals, and 
sustainable and clean energy.  

CAMEO develops methods to provide uncertainty information about CAMS products, in 
particular for emissions, policy, solar radiation and deposition products in response to 
prominent requests from current CAMS users. CAMEO contributes to the medium- to long-
term evolution of the CAMS production systems and products.  

The transfer of developments from CAMEO into subsequent improvements of CAMS 
operational service elements is a main driver for the project and is the main pathway to impact 
for CAMEO.  

The CAMEO consortium, led by ECMWF, the entity entrusted to operate CAMS, includes 
several CAMS partners thus allowing CAMEO developments to be carried out directly within 
the CAMS production systems and facilitating the transition of CAMEO results to future 
upgrades of the CAMS service.  

 

2.2 Scope of this deliverable 

2.2.1 Objectives of this deliverables 

In this study, we work on a localised error model, which shall provide an error estimate for an 
individual point in time and space. As the CAMS Radiation Service (CRS) is a time series 
service for a user-defined location, it uses inputs on clouds, aerosols, water vapour, ozone, 
and surface albedo in various spatial and temporal resolutions to irradiance estimates at the 
location of interest interpolated in time and space.  

Validation of the CRS was so far done only as regular quality control against ground-based 
observations. It provides standard mean metrics as mean bias error (MBE), mean absolute 
error (MAE), standard deviation of the error (STDE) and root mean square error (RMSE) 
against ground-based observations at as many locations as possible. Due to the general lack 
of high-quality ground observations, it is not possible so far to assess individual error 
information on every time series element, considering viewing and solar geometry conditions 
as well as cloudy/non-cloudy status or aerosol loaded/aerosol-free.  

In this context, CAMEO followed two approaches separately: on the one hand we tried to 
extend the database of ground-based observations towards the spatially very dense SYNOP 
network to detect and quantify the importance of spatial features, On the other hand we 
investigated if the input data space variables are suitable as predictors for an individual data 
point accuracy estimate.  

The extension to the SYNOP network required an in-depth quality control of single-parameter 
stations which provide only global horizontal irradiation (GHI) observations. Calibration and 
data quality problems of such stations as well as validation results with a dense spatial 
coverage were documented in the previous deliverable D4.1. Mainly, results showed 
dependencies on surface elevation and irradiance and therefore pointed towards 
improvements in the physical retrieval method.  
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In this study, we focus on stations with all three radiation components (global, direct, diffuse) 
measured independently and therefore, with higher accuracy. Data-driven Look-up-table and 
machine-learning based error models are derived and evaluated.  

These methods shall provide the basis for an error estimate of individual time series data 
points of the CRS at the user-defined spatial location. Furthermore, the error model will be the 
basis for future model improvements in the CRS evolution, define priorities for method 
developments and serve as a monitoring tool to quantify future improvements.  

 

2.2.2 Work performed in this deliverable 

In this deliverable the work as planned in the Description of Action (DoA, WP4 T4.3.2 and 
T4.3.3) was performed. 

2.2.3 Deviations and counter measures 

Task 4.3.1 was closed without investigating the online bias correction mode based on spatially 
high resolved SYNOP data. The Meteo-France SYNOP data usage was found to be very time 
consuming and still affected by biases especially in cloud free conditions, which cannot be 
easily solved. Reasons are likely due to reduced maintenance of the stations compared to 
three-component observing high-quality stations. Any bias correction scheme would therefore 
likely introduce biases from the observation system instead of correcting the CAMS Radiation 
Service. 

Furthermore, most of remaining spatial patterns can be traced back to surface elevation and 
mean solar radiation which are independent of their spatial structure. These effects were 
investigated separately, and solutions with improved parameterizations of e.g. the surface 
elevation treatment will be implemented in the next update of the CAMS Radiation Service, 
more specifically in its clearsky model McClear.  

The original goal of task 4.3.1, namely to prepare and test a later operational implementation 
of an online bias correction, is therefore not meaningful anymore. Spatially dense data does 
not help us for a better product – even if trained continuously or regionally/spatially dependent. 
Instead, an offline bias correction will be included in the quantification of the error distribution: 
the complete distribution of the error of CAMS Radiation service will be predicted as a new 
product extension. This information will include implicitly the bias.  

Nevertheless, we have achieved a methodology to assess & quantify spatially (as documented 
in D4.1) which is very helpful for the quality monitoring inside CAMS. We may re-run the spatial 
assessment once we have a new major revision of CAMS Radiation Service algorithms. 

 

2.2.4 CAMEO Project Partners: 

 

ECMWF EUROPEAN CENTRE FOR MEDIUM-RANGE WEATHER 
FORECASTS 

Met Norway METEOROLOGISK INSTITUTT 

BSC BARCELONA SUPERCOMPUTING CENTER-CENTRO 
NACIONAL DE SUPERCOMPUTACION 

KNMI KONINKLIJK NEDERLANDS METEOROLOGISCH INSTITUUT-
KNMi 

SMHI SVERIGES METEOROLOGISKA OCH HYDROLOGISKA 
INSTITUT 
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BIRA-IASB INSTITUT ROYAL D'AERONOMIE SPATIALEDE 

BELGIQUE 

HYGEOS HYGEOS SARL 

FMI ILMATIETEEN LAITOS 

DLR DEUTSCHES ZENTRUM FUR LUFT - UND RAUMFAHRT EV 

ARMINES ASSOCIATION POUR LA RECHERCHE ET LE 
DEVELOPPEMENT DES METHODES ET PROCESSUS 
INDUSTRIELS 

CNRS CENTRE NATIONAL DE LA RECHERCHE SCIENTIFIQUE 
CNRS 

GRASP-SAS GENERALIZED RETRIEVAL OF ATMOSPHERE AND 
SURFACE PROPERTIES EN ABREGE GRASP 

CU UNIVERZITA KARLOVA 

CEA COMMISSARIAT A L ENERGIE ATOMIQUE ET AUX 
ENERGIES ALTERNATIVES 

MF METEO-FRANCE 

TNO NEDERLANDSE ORGANISATIE VOOR TOEGEPAST 
NATUURWETENSCHAPPELIJK ONDERZOEK TNO 

INERIS INSTITUT NATIONAL DE L ENVIRONNEMENT INDUSTRIEL 
ET DES RISQUES - INERIS 

IOS-PIB INSTYTUT OCHRONY SRODOWISKA - PANSTWOWY 
INSTYTUT BADAWCZY 

FZJ FORSCHUNGSZENTRUM JULICH GMBH 

AU AARHUS UNIVERSITET 

ENEA AGENZIA NAZIONALE PER LE NUOVE TECNOLOGIE, 
L'ENERGIA E LO SVILUPPO ECONOMICO SOSTENIBILE 

 

 

  



CAMEO  
 

D4.4 Localised Reliability Model for Radiation              8 

 

3 Database for the CAMEO localised error model  

A well depurated ground observations database is key for an in-depth analysis and correct 
understanding of the deviations that the operational CRS irradiation estimates have. This 
database should cover a very large spatio-temporal domain to allow a reliable estimation of 
the contribution that different components of the CRS model produce to the total irradiation 
deviation.  

3.1 Ground observations Catalogue 

The starting point for the CAMEO reference database is the stations found on the ARMINES 
THREDSS server catalogue (ARMINES, 2025), which is considered as the operational ground 
observations database of the CRS. A considerable effort is continuously spent by the 
ARMINES team to collect on this catalogue ground observations from high quality irradiance 
measurement network all around the world. An interactive online viewer/downloader of the 
data is also available under http://viewer.webservice-energy.org/in-situ/. Figure 1 shows a 
snapshot of this web viewer. It shows the location of all available stations in the catalogue 
(including the stations with open and non-open data policy). Stations can be filtered by network 
(color of the location pointer). In the case of open data, the non-registered user can download 
all the available observations from the station in “csv” or “netcdf” files, and view the quality 
control visual dashboard of the station data. The most important metadata of the stations is 
also displayed and the available parameters are listed. The CAMEO development team has 
access to all the stations in the catalogue. 

 

   

Figure 1. Web viewer for the ground observations in the THREDDS server. Left: geolocations 
of the stations. Right: Station information including data in csv/netcdf format, visual quality 

check dashboard and available parameters) 

To date, the catalogue contains 295 ground observation stations from the following 
measurement networks: 

• BOM: Australia Region (http://www.bom.gov.au/climate/data-services/about-data-
observations.shtml#tabs=Networks-and-data) 

• BSRN: Worldwide (https://bsrn.awi.de/) 

• enerMENA: MENA Region, see (Schüler et al., 2016) 

• ESMAP: Wolrwide (https://globalsolaratlas.info/solar-measurement) 

• IEA-PVPS: Worldwide (https://iea-pvps.org/research-tasks/solar-resource-for-high-
penetration-and-large-scale-applications/) 

http://viewer.webservice-energy.org/in-situ/
http://www.bom.gov.au/climate/data-services/about-data-observations.shtml#tabs=Networks-and-data
http://www.bom.gov.au/climate/data-services/about-data-observations.shtml#tabs=Networks-and-data
https://bsrn.awi.de/
https://globalsolaratlas.info/solar-measurement
https://iea-pvps.org/research-tasks/solar-resource-for-high-penetration-and-large-scale-applications/
https://iea-pvps.org/research-tasks/solar-resource-for-high-penetration-and-large-scale-applications/
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• ISE-PVlive: Southwest Germany (https://zenodo.org/records/5196408) 

• METEO-FRANCE : France (https://www.aeris-data.fr/en/projects/observation-data-
from-the-meteo-france-ground-based-observation-network/)   

• NREL-MIDC: USA Region (https://midcdmz.nrel.gov/) 

• OZFLUX: Australia and New Zeland 
(https://www.ozflux.org.au/monitoringsites/index.html) 

• SAURAN: South Africa Region, see (Brooks et al., 2015) 

• SKYNET : Worldwide (https://www.skynet-isdc.org/obs_sites.php) 

• SOLRAD: USA Region https://gml.noaa.gov/grad/solrad/) 

• SURFRAD: USA Region  (https://gml.noaa.gov/grad/surfrad/) 
 
All ground observation stations in this catalogue have data with a temporal resolution of 1 
minute. This is the temporal resolution that we have also chosen for the reference database. 

3.2 Expert quality control procedure on the ground observations 

It is a fact that the ground observations found on the THREDDS catalogue come from the 
most renowned irradiance measurement networks available. Nonetheless, the quality of the 
data needed for a reliable assessment of the error of the CRS irradiation estimates cannot be 
automatically ensured. Indeed, as part of the CAMEO project, we took the task of developing 
a highly selective method to filter out data of doubtful quality from these ground observations. 
The main objective of these pre-selection of observations is to maximize the probability that 
the deviations found on our posterior analysis come from the CRS model itself and not from 
errors/inconsistencies on the ground observations.  

The steps of the selection procedure developed as part of the CAMEO project are as follow: 

1. Field of view filtering: as the CRS irradiation estimates are only available for the 

field of view (FOV) of the Meteosat Second Generation (MSG) and Himawari 

geostationary satellites, all ground observations outside these satellite range are 

discarded.  

2. 3-component existence: Allow only instances with valid measurements for the 3 

main irradiance components, i.e., Global Horizonal Irradiance (GHI), Diffuse 

Horizontal irradiance (DHI) and Beam (or Direct) normal irradiance (BNI). In this step 

all stations with GHI-only observations are discarded (e.g., all stations in the Meteo-

France and PVLive dense pyranometric networks) 

3. Visual quality inspection: An expert quality assessment is performed to each of the 

remaining ground observations. This assessment is based on the visual inspection of 

the quality dashboard shown in Figure 2. This dashboard includes the visualization of 

the data in a time series plot (in group A), in a carpet plot or day vs hour of day (in 

group B), calibration inspection plots (in group C), standard BSRN 1,2, and 3 

component tests (Long, 2002) plots (in group D), distribution of flagged data with the 

BSRN component tests (in group E) and shadow detection plots (in group F). Using 

this visual aid, the following steps are performed: 

  

a. Discarding of shifted data: data showing any time-shift (e.g, with respect to 

the clearsky daily pattern) is directly discarded  

b. Discarding of bad calibrated data: Data that present patterns (deviate more 

than 0.05 from the 1 line) on the group C plots is discarded.   

c. Discarding of station due to flagging:  when the patterns of the BSRN tests 

plots in  group D do not correspond to the expected patterns (as those shown 

in Figure 2), the stations is discarded 

4. Filtering on a 6-month basis: remaining data is then inspected in a 6 months range 

base. Only 6-month ranges with complete and plausible data are retained, all other 6-

https://zenodo.org/records/5196408
https://www.aeris-data.fr/en/projects/observation-data-from-the-meteo-france-ground-based-observation-network/
https://www.aeris-data.fr/en/projects/observation-data-from-the-meteo-france-ground-based-observation-network/
https://midcdmz.nrel.gov/
https://www.ozflux.org.au/monitoringsites/index.html
https://www.skynet-isdc.org/obs_sites.php
https://gml.noaa.gov/grad/solrad/
https://gml.noaa.gov/grad/surfrad/
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months ranges are discarded. This is done to avoid intra-seasonal bias on the 

reference data. 

5. Data cleaning: From the retained observations, all time instances that remained 

flagged are discarded from the database (turned to NaN values). 

 

 

Figure 2. Visual quality dashboard for the station BSRN-CAR. It includes: time series plots (A), 
carpet plots (B), calibration inspection plots (C), BSRN components tests plots (D), 

distribution of flagged data plots (E) and shadow detection plots (F).  

Figure 2 shows the visual quality check dashboard for the station BSRN-CAR because this 
station shows a very good quality in all the indicators presented in the dashboard. For the sake 
of comparison, the visual quality check dashboard for the station BSRN-KWA is shown in 
Figure 3. In the dashboard of Figure 3 we see clearly missing data in plot-group B. We can 
also confirm a bad calibration/levelling of the instruments with the plot-group C. We detect a 
non-expected pattern on BSRN component tests plot-group D (as seen on the BSRN closure 
test on the bottom-right) which is well reflected on the flag distribution on group E (red zone). 
Finally, we detect on the group F a shadow of about 5° in solar elevation on sunrise in the 
winter time (found on values of Solar Zenith Angle (SZA) between 70° and 80°). 
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Figure 3. Visual quality dashboard for the station BSRN-KWA.  
Same description as for Figure 2. 

After the selection procedure described above is applied, the number of stations is reduced 
from 295 to 66. The list of these retained station is shown in Table 1. 

Table 1. List of stations retained for the CAMEO reference database (66 locations) 

STATION NAME Latitude [°] Longitude [°] Elevation [m] Climate 

ABOM-ADE -34.952 138.521 7 Csb 

ABOM-ALI -23.798 133.888 547 BWh 

ABOM-BRO -17.949 122.234 9 BSh 

ABOM-CAP -40.672 144.688 93 None 

ABOM-COC -12.193 96.835 6 None 

ABOM-DAR -12.424 130.893 32 Aw 

ABOM-GER -28.805 114.699 30 Csa 

ABOM-KAL -30.791 121.461 368 BSh 

ABOM-LEA -22.242 114.096 6 BWh 

ABOM-ROC -23.377 150.477 12 Cfa 

ABOM-TOW -19.250 146.770 4 Aw 

ABOM-TUL -37.667 144.830 132 Cfb 

ABOM-WAG -35.160 147.456 213 Cfa 

BSRN-ABS 44.018 144.280 38 None 

BSRN-ASP -23.798 133.888 547 BWh 

BSRN-BUD 47.429 19.182 139 Dfb 

BSRN-CAB 51.971 4.927 0 Cfb 

BSRN-CAM 50.217 -5.317 88 Cfb 

BSRN-CAR 44.083 5.059 100 Csb 

BSRN-CNR 42.816 -1.601 471 Cfb 

BSRN-DAA -30.667 23.993 1287 BSk 

BSRN-DWN -12.424 130.893 32 Aw 
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BSRN-ENA 39.091 -28.029 15 N/A 

BSRN-FLO -27.605 -48.523 11 N/A 

BSRN-FUA 33.582 130.376 3 N/A 

BSRN-GOB -23.561 15.042 407 BWh 

BSRN-HOW 22.553 88.306 51 Aw 

BSRN-INO 44.344 26.012 110 Dfb 

BSRN-ISH 24.337 124.164 6 Af 

BSRN-IZA 28.309 -16.499 2373 BWk 

BSRN-LAU -45.045 169.689 350 Cfb 

BSRN-LER 60.139 -1.185 80 None 

BSRN-LIN 52.210 14.122 125 Dfb 

BSRN-LYU 22.037 121.558 324 Af 

BSRN-MNM 24.288 153.983 7 None 

BSRN-PAL 48.713 2.208 156 Cfb 

BSRN-PAR 5.806 -55.215 4 Af 

BSRN-PAY 46.815 6.944 491 Dfb 

BSRN-RUN -20.901 55.484 116 Af 

BSRN-SAP 43.060 141.329 17 Dfa 

BSRN-SBO 30.860 34.779 500 BWh 

BSRN-TAT 36.058 140.126 25 Cfa 

enerMENA-ADR 27.880 -0.274 262 BWh 

enerMENA-CAI 30.036 31.009 104 BWh 

enerMENA-ERF 31.491 -4.218 859 BWh 

enerMENA-OUJ 34.650 -1.900 617 BSk 

enerMENA-PSA 37.091 -2.358 500 Bsk 

enerMENA-TAN 28.498 -11.322 75 N/A 

enerMENA-TN 32.974 10.485 210 BWh 

enerMENA-ZAG 30.272 -5.852 783 BWh 

ESMAP-CHI -15.548 28.248 1224 Cwa 

ESMAP-CHO -16.838 27.070 1282 Cwa 

ESMAP-DAR -6.781 39.204 190 Aw 

ESMAP-KAO -14.840 24.932 1167 Cwa 

ESMAP-LUS -15.395 28.337 1262 Cwa 

ESMAP-MUT -12.424 26.215 1317 Cwa 

SAURAN-CSIR -25.747 28.279 1400 Cwa 

SAURAN-FRH -32.785 26.845 540 Cfb 

SAURAN-GRT -32.485 24.586 660 BSh 

SAURAN-NUST -22.565 17.075 1683 BSh 

SAURAN-RVD -28.561 16.761 141 BWk 

SAURAN-UBG -24.661 25.934 1014 BSh 

SAURAN-UNV -23.131 30.424 628 Cwa 

SAURAN-UNZ -28.853 31.852 90 Cfa 

SAURAN-UPR -25.753 28.229 1410 Cwa 

SAURAN-VAN -31.617 18.738 130 BWk 
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Figure 4 shows the spatial distribution of the stations. We see that the spatial coverage is very 
good for Europe, the north/south of Africa and Australia. The coverage is much sparser in the 
east of south America (near the edge of the field of view of the MSG satellite) and in Japan. 
We have a lack of high-quality ground observations on the Saharan/sub-Sharan Africa and 
continental Asia.    

 

Figure 4. Ground observation stations retained for the reference database (66 locations). 

The temporal availability of the reference database is shown sorted by ascending availability 
on Figure 5. In this figure the labels shown in the Y-axis correspond to: number of available 
days - satellite - station name. In one hand, we see that some stations retained contain more 
than 15 years of observations (e.g., station at the bottom: BSRN-CAB, BSRN-LIN, enerMENA-
PSA). In the other hand, we see that due to the restrictive quality assessment, some stations 
have only 6 months of data (e.g., station at the top: BSRN-PAR, enerMENA-TAN and BSRN-
HOW). In the same way, Figure 6 shows the temporal availability of the reference database 
sorted by satellite. From this summary, we see that the spatial and temporal availability of 
ground observations is greater for the MSG satellite than for the Himawari satellite. 
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Figure 5. Temporal availability in days of the retained ground observations sorted by 
ascending availability. The labels on the Y axis correspond to: number of available days – 

satellite (M for MSG and H for Himawari) - station name. 
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Figure 6. Temporal availability in days of the retained ground observations sorted by satellite. 
The labels on the Y axis correspond to: number of available days – satellite (M for MSG and H 

for Himawari) - station name 

 

3.3 Creation of the database 

3.3.1 CRS output data 

In order to finalize the reference database, the operational expert mode output of the available 
timestamps for each one of the retained stations is obtained through the Vaisala CRS API 
(Vaisala, 2025). 

The values obtained from the CRS expert mode output are: 

• Irradiation: clear sky GHI, clear sky BHI (Beam Horizontal Irradiation), clear sky DHI, 

clear sky, BNI, GHI, BHI, DHI 

• Atmospheric composition: tco3, tcwv, AOD BC, AOD DU, AOD SS, AOD OR, AOD 

SU, AOD NI, AOD AM, AOD SO 

• Cloud properties: cloud optical depth, cloud coverage (probability), cloud type 

• Albedo: fiso, fvol, fgeo, albedo 
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• Other: reliability, SZA, summer/winter split, alpha, snow probability 

3.3.2 Reference dataset files creation 

Once this CRS output was obtained, the dataset was created by co-aligning in time the 
irradiance of the ground observations retained with the output parameters of the CRS expert 
mode described in the previous section. This data alignment was done independently for each 
station. As a result, for each station a 2D numerical array is obtained, in which the first 
dimension is time and the second dimension is the different parameters. This array is then 
stored in a hdf5 file named after the station (e,g. BSRN-CAB.h5). 

The general structure of these hdf5 files is: 

FILE_CONTENTS { 

 

 group      /                                    

  

     dataset    /time                            

         attribute  /time/description            

         attribute  /time/dimensions 

         attribute  /time/units 

      

     dataset    /parameters                      

         attribute  /parameters/description 

         attribute  /parameters/dimensions 

         attribute  /parameters/units 

      

     dataset    /data                            

         attribute  /data/description 

         attribute  /data/dimensions 

      

} 

 

Here, the time dataset is a 1D array which contains the Unix timestamps (epoch 1970) of 
length N_time, the parameters dataset is a 1D array with the names of the different 
parameters with length N_params and the data dataset is a 2D array containing the actual 
parameter values with a shape of (N_time, N_params). The grouping of the 66 hdf5 files (one 
per stations retained) is what we define as the reference CAMEO dataset.  

This expert controlled dataset has been shared with all the task members and constitutes the 
common reference for the development of the different versions of the localised error model. 

3.3.3 Reference data check 

After the creation of the dataset, we proceeded to an inspection of the time series obtained. 
This was done to check that no error was introduced on the co-alignment of the data 

3.3.3.1 Irradiance values inspection 

As a first data check, we have compared the “carpet plots” (day vs time of day) of the modelled 
CRS irradiance estimates and the ground observations for all timestamps. Here we wanted to 
check plausibility of the irradiance patterns for all stations. This is shown in Figure 7 for the 
station BSRN-BUD.  

As a result of this analysis, we have found that 3 of the locations in the HIMAWARI FOV show 
an un-explicable irradiance pattern during some months in the year on the diffuse and beam 
components. These patterns are shown in Figure 8. In this figure we see a periodical decrease 
of the diffuse, beam and global irradiance during the summer months. The duration of the 
sudden irradiance changes increases with the subsequent days until a maximum value is 
achieved and then decreases again until it disappears. This gives the appearance of an oval-
like irradiance dip on the carpet plot on the affected station. This information and the list of 
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stations affected has been given to the CAMS CRS development team for further analysis. 
For what concerns the error model, we did not exclude the data of these stations from the 
reference dataset as these erroneous irradiance values make part of the operational CRS 
estimates (CRS v4.6) and should be considered by our localised error model.  

 

Figure 7. Reference data check: Irradiance carpet plots for the station BSRN-BUD. GHI on first 
row, DHI on second row and BNI on third row. CRS estimates on left column, ground 

observations on right column.  
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Figure 8. Reference data check: Irradiance carpet plots for the station ABOM-BRO  
(as in Figure 7) 

No other irregularity was found on all the other stations inspected. 

 

3.3.3.2 Deviations distributions inspection  

 

In the same way, we have analysed the deviations found between the CRS irradiance 
estimates and the ground observations on all the stations in the dataset. Figure 9 shows the 
deviations carpet plot and the deviations distribution for the station BSRN-BUD. The 
distribution plots include the standard error metrics. In general, the deviations value ranges 
and the distributions found for the stations are found as expected. A perfectly symmetrical 
normal distribution of the deviations is not expected for the CRS estimates as the values do 
present fixed lower (0 W/m²) and upper (~1100 W/m²) irradiance limits. This can be seen 
specially for the diffuse and beam components.   
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Figure 9. Reference data check: Irradiance deviations for the station BSRN-BUD. GHI on first 
row, DHI on second row and BNI on third row. Deviations carpet plot on the left and deviations 

distributions on the right. The latter plot includes error metrics MBE (µ), STDE (α), MAE and 
RMSE in absolute values [W/m²]. 

 

We found that for some stations the beam normal irradiance component presents a bimodal 
distribution, with a second peak on the negative values (overestimation). This is shown for the 
stations BSRN-COC and BSRN-CAP in Figure 10. The error model developed on this task will 
be used to assess the causes of this distribution.  
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Figure 10. Reference data check: deviation distributions of the beam component for the BSRN-
COC station (left) and the BSRN-CAP station (right). The error metrics MBE (µ), STDE (α), MAE 

and RMSE in absolute values [W/m²] are shown for each station. 

 

3.3.3.3 Database statistical error metrics  

Finally, we have checked the standard statistical error metrics for every station in the 
database. The MBE and STDE for each of the stations are shown in Figure 11. As expected, 
the metrics for BNI have higher values than for ones for GHI and the absolute value ranges 
are in the accordance to those found on the quarterly validation EQC reports (CAMS Radiation 
Serivce, 2025). 

 

 

 

Figure 11. Dataset check: MBE and STDE for each station in the database. Top: MBE (red zone 
represents overestimations and blue zone represents underestimations), bottom: standard 

deviation, left: GHI and right: BNI.  

This finalizes the sanity check of the reference CAMEO dataset. The dataset as processed 
until this point is the base for the development of the localised error models of the next section. 
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4 Localised error model 1: uncertainty inference based on 
parametric binning  

One of the motivations of the CAMEO project is to develop a model that enables the CRS 
team to calculate a pixel-wise uncertainty estimate of the CRS irradiance products. Until now, 
the CRS irradiance products have been validated using standard aggregated error metrics at 
ground observation stations and aggregated over 3 months or a single year. Such results are 
regularly provided in the CRS quarterly validation reports (CAMS Radiation Serivce, 2025). 
The error metrics used in the validation reports are sufficient to get an idea of the overall 
performance of the CRS products but are not able to provide any error information on the 
individual location and time of interest. In order to breach such a limitation, as part of this 
project, we developed an error model optimized on the estimation of the errors for the 
individual timesteps at any location of the CRS domain. To develop such a model, we need to 
exploit a very large number of ground observations which allows us to describe the inherent 
errors added by the different hypothesis made on CRS input data on clouds, aerosols, water 
vapour, albedo as well as radiative transfer modelling algorithms. The reference dataset that 
we use for this development has been already processed and validated as described in section 
3. 

4.1 Spatio-temporal data separation 

Before the reference dataset is exploited for the development of the error models, we need 
first to ensure that the data used for training the models represent as much as possible all the 
cases for which the CRS user exploits the data. The most general case is that the CRS user 
needs irradiance estimations on locations where no ground observations are available 
(resource assessment studies, PV yield calculations, etc.). This requires an estimate of the 
uncertainty on locations for which there is no reference as there is no ground observations 
available. To take this in to account, the data used for the development of our methods is 
separated for training and validation purposes. This is done by using N stations for the training 
procedure and 66 – N station for the validation/test procedures. In this way the inference on 
the uncertainty is done on a location where no data has been used on the training procedure. 
In the same way, to ensure that a data point is not use twice in the process, a time separation 
is also ensured. In this way, X% of the data is used for training purposes, Y% is used for 
validation and an unseen 100 - X - Y % is just used in a final test phase. Figure 12 shows the 
schematic for the spatio-temporal separation of the reference dataset.  

 

 

Figure 12. Spatio-temporal separation of the reference dataset. 

4.2 Methodology 

In order to understand the inherent characteristics of the deviations provided by the 
operational CRS irradiation estimates, we decided to use as a baseline an error model that 
characterizes the deviation distributions for every situation directly from the CRS input 
parameters. This baseline error model is based on the characterization of the uncertainty 
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distribution by means of binning the CRS model input parameters. This methodology is 
schematized on Figure 13. Using this method, we cluster together CRS deviations values 
which are calculated from the same input binning ranges (e.g, blue cube-like bin in Figure 13). 
The uncertainty distribution for each individual bin in the domain is estimated. This enables 
the attribution of a different error distribution to each bin. A look up table (LUT) is then built 
from these distributions. As a result, in this LUT the features are the different input parameters 
from the CRS model and its values correspond to the different moments that characterize the 
deviation distribution.  

  

 

Figure 13. Baseline error model based on parametric binning. Here the features correspond to 
the chosen CRS model input parameters. The values inferred from the LUT correspond to the 

different distribution moments of the individual bins. 

As a result, the input parameters of the CRS model are used directly to estimate of the 
uncertainty distribution on any individual location/instance.   

An overarching question on this approach is which distribution function to use to describe the 
deviations found on the different bins (e.g., Normal distribution, Laplace distribution, etc.). This 
is not an easy task, as we already confirmed in the section 3.3.3.2 that the distribution of the 
CRS deviation can have different forms. In order to answer this question, we first use the LUT 
table as an inspection/monitoring tool of the CRS deviations. 

4.3  Inspection run and monitoring tool 

In order to visualize the base error patterns found in the CRS deviations, we create a simple 
LUT using the parameters of solar zenith angle (SZA), related to the position of the sun in the 
sky, and the clear sky index (Kc), which can be used as a simple proxy for sky conditions.  

We have used for this inspection run the bin ranges for the parameters 

 

SZA = {0, 10, 20, 30, 40, 50, 60, 70, 80, 90} 

Kc  = {0, 0.2, 0.4, 0.6, 0.8, 1, 1.3, inf} 

 

with the data of 2 stations BSRN-ABS and BSRN-BUD. These stations are known to be well 
modelled by the CRS. 
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The LUT has been then created with the standard error metrics of the CRS irradiance 
deviations: MBE, MAE, STDE and RMSE. Figure 14 shows the 2D visualization of such error 
metrics for the obtained LUT.  

 

 

Figure 14. Inspection run of LUT on SZA and Kc for the standard error metrics of the CRS 
irradiance estimates. Top: GHI, middle: DHI, bottom: BNI. The columns are from left to right are 

count inside bin, MBE, STDE, MAE, and RMSE. 

We see with this simple inspection run that we have very well populated bins (> 1000 data 
points) for all cases except low Kc for the DHI component. This is expected as Kc for DHI will 
tend to grow from a minimum value in clear sky situations to a maximum value on overcasted 
situation. Therefore, the probability to encounter values of Kc for DHI < 0.2 is quite low. In fact, 
GHI and DHI will never have a Kc = 0 because of the minimum value imposed by the diffuse 
radiation. As a consequence, low values of Kc for GHI and DHI must be inspected with care.  

Figure 14 shows that the STDE, MAE and RMSE present very similar patterns for the same 
irradiance component. GHI metrics have a tendency for high errors at mid values of Kc and 
low values of SZA. For DHI the higher errors seem to be on lower SZA values independent of 
the Kc. For BNI the error patterns are still more pronounced, with increasing metrics with 
decreasing SZA and achieving maximal value in mid Kc values.  

This simple LUT run is an effective CRS monitoring tool as it will allows to quantify the changes 
of errors patterns that any modification/updates on the base CRS models or its inputs bring 
on the CRS output estimates. We will be able to easily monitor quality improvement or 
deterioration of the irradiance estimates and detect directly which instances are the most affect 
by the deviations.  

4.3.1 LUT bins distribution inspection 

In the previous section we found the error metrics for each bin of the LUT but we have no 
information yet about the form of the error distribution for each bin. To get this information, we 
created a histogram of the irradiance errors for each bin in the trained LUT. These distributions 
are shown for the GHI component in Figure 15. This figure presents the error distributions for 
each LUT bin, based on 20 irradiance value intervals, represented by a continuous green line. 
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The theoretical normal distribution obtained with the MBE (µ) and STDE (α) of the respective 
bin is also shown on the dashed blue line. The values of µ and α used for the normal 
distribution on each bin are the ones calculated in the previously and shown in Figure 14. Both 
distributions are normalized for ease of comparison. 

 

Figure 15. Normalized GHI error distribution per bin of the LUT calculated on the inspection 
run. For each bin the green continuous line shows the distributions found with 20 ranges on 

irradiance values and the dashed blue line shows the theoretical normal distribution obtained 
with the MBE (µ) and STDE (α) of the respective bin (shown in Figure 14).  

Columns: Kc ranges; Rows: SZA ranges.  

Figure 15 shows that the GHI error distributions follow loosely the form of its corresponding 
normal distribution. First of all, the form of the distribution seems to be independent of SZA. In 
most of the cases the error distribution is contained inside the normal distribution. This means 
that if used, the normal distribution will in general model a greater variability of the errors than 
the one that is actually expected. Moreover, for some Kc ranges, the actual distribution does 
not follow a normal distribution (e.g, 0.8 to 1 and 1 to 1.3). This is due to the fact that the GHI 
variable is physically bounded by an upper limit (clear sky irradiance + cloud enhancements) 
which results by definition on a non-symmetrical distribution.  
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The behaviour of the error distributions for the DHI component are quite similar to those found 
on the GHI component. However, the distributions on the BNI component show quite a 
different behaviour. The distributions found to the BNI component are shown in Figure 16. 

 

 

Figure 16. Normalized BNI error distribution per bin of the LUT calculated on the inspection 
run (same representation as the one shown in Figure 15) 

For the BNI component none of the bins seems to follow a normal distribution. The asymmetry 
found on the lower and higher Kc ranges are also explained by the physical lower and upper 
limits of the BNI irradiance values respectively (limit of 0 for the lower range and clear sky 
irradiance for the higher range). Furthermore, the detection of thin clouds with COD below 5 
(as relevant for cases with BNI above zero) as well as of small-scale clouds in sub-pixel spatial 
extension is restricted. It is known, that many cases are typically found in scatterplots on one 
of the two axes. Therefore, also in all other ranges, the expected deviation distributions are 
highly skewed or bi-modal. On the bi-modal distributions none of the modes appears at a 
deviation of 0 W/m². Therefore, the use of metrics as bias and RMSE inside each bin in the 
error model is restricted in such a simple LUT.    
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4.3.2 Location based distribution inspection 

The error distributions shown until now are for the inspection run LUT that was trained using 
only the data from BSRN-BUD and BSRN-ABS stations, which are known to be stations that 
are well modelled by the CRS estimates. In a next step we want to understand the effect that 
the physiography of the location has on the distribution, since CRS has shown difficulties to 
model locations over different terrains, i.e. small island, high altitude, high latitude, etc. To do 
so, we first choose 2 groups of ground observation locations to analyse: 

• Group 1: BSRN-CAB, BSRN-PAY and BSRN-PAL. These locations are known to 

be very well represented by the CRS and have not been used before.  

• Group 2: BSRN-RUN, BSRN-IZA, BSRN-ENA. These are locations known to be 

difficult to model by the CRS: The BSRN-RUN station is located in the Reunion 

Island very near the coast (at around 2 km from the ocean). The BSRN-IZA is 

located on a mountain top at an altitude of 2372 m. The BSRN-ENA is located in a 

very small island in the middle of the Pacific Ocean (at around 600 m from the 

ocean). 

To be able to compare the effect of the location, we will need train one LUT per station studied. 
This will allow us to obtain the error distributions of the bins per station. We proceed then by 
training an independent LUT for each of the stations in group 1 and group 2 (6 new LUT 
obtained). The parameters used on the training of the LUT are the same ones used on the 
inspection run described on section 4.3. The distributions found for the GHI component of the 
3 stations of group 1 are shown in Figure 17. 

This figure shows that the distributions for the 3 well modelled stations are very similar on all 
of the bins in the domain. Even the bimodal distributions found on the (0.6 - 0.8) Kc range 
describe the same peak positions for the 3 stations. From these results it is clear that the CRS 
irradiance estimates reproduce the same type of modelling errors for these 3 sites, 
independent from the sky situation or the sun position used. 

On the other hand, the reproducibility of the same type of the modelling errors cannot be found 
on the distributions for the GHI component of the stations of group 2, as shown in Figure 18. 
These distributions present high discrepancies with respect to the distributions found in group 
1, which is here represented by the distribution of the station BSRN-CAB. The discrepancies 
are evident on the (0.4 – 0.6) and (0.6 – 0.8) Kc ranges where the some of the group 2 stations 
present a bi-modal distribution while the group 1 stations do not. The same tendencies are 
found for the differences between group 1 and 2 in the DHI and BNI components (not shown 
here).   
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Figure 17. Normalized GHI error distributions for each of the stations in group 1 (BSRN-CAB, 
BSRN-PAY and BSRN-PAL). Columns: Kc ranges; Rows: SZA ranges. 
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Figure 18. Normalized GHI deviation distributions for each of the stations in group 2 (BSRN-
RUN, BSRN-IZA and BSRN-ENA) and one station from group 1 (BSRN-CAB). Columns: Kc 

ranges; Rows: SZA ranges. 

 

We confirm from the previous results that: 

• there seems to be no unique distribution that satisfies all the deviation patterns found 

on the CRS irradiance estimates 

• the location (e.g, local terrain, orography) of the CRS estimate has a big impact on 

the irradiance estimate uncertainty 

Following the reasoning of these findings, we have decided not to use a typical normal 
distribution function to model the deviations found on the operational CRS irradiance 
estimates. Instead, we add distribution independent parameters, i.e., percentiles, in order to 
achieve additionally a probabilistic-based inference of the CRS errors.   

4.4 Baseline run 

4.4.1 Model training 

In order to select the parameters to train the baseline error model, we use the results already 
obtained from the SHAP (SHapley Additive exPlanations) analysis of the CRS deviations 
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which was reported on D4.3. From this analysis, a ranking of the CRS input parameters with 
respect to their contribution to the overall irradiance error (SHAP values) was found. This 
ranking is shown on the SHAP Beeswarm diagram on Figure 19.  

 

 

Figure 19. Beeswarm diagram for the GHI deviation obtained from the SHAP analysis on the 
deliverable 4.3. Cloud related parameters on blue, albedo related parameters on red, aerosol 

related parameters on beige and irradiance level on yellow. 

This diagram provides a comprehensive view of the SHAP values found for each CRS input 
parameter, ranking them from high to low contribution to the overall deviation. The parameters 
found to have the highest contribution on biases are the cloud related parameters, followed 
by the irradiance magnitude and the albedo related parameters.  

To avoid the complication of interpretability the use of correlated inputs induces and to avoid 
the scaling problem due to high number datapoints/dimensions used in the training phase, we 
have decided to choose firstly the 3 most relevant parameters for an initial run of the training 
of the error model.   

It was previously found that the input parameter that shows the highest contribution to the 
deviations is the cloud coverage. This parameter corresponds to the cloud probability (value 
between 0 and 100 %) calculated for the respective pixel on the satellite image using the 
APOLLO_NG algorithm. Due to the high correlation between the 3 cloud parameters, the cloud 
type and cloud optical depth are not used on this initial implementation of the error model. The 
second most ranked group in the SHAP analysis is the irradiance magnitude itself. Because 
of this, the second parameter chosen for the training of the error model is the Kc, which 
corresponds to the ratio between the irradiance estimate modeled by the CRS and the 
irradiance expected at the surface on the cloudless situation (clear sky). Finally, we decided 
to use as the third parameter the SZA as it accounts for the sun position on our error model. 
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In future model trainings this list can be extended, but for the first assessment, we keep a 
small parameter space.  

The bins chosen for the initial run of the error model are the ones obtained with the following 
spacing: 

cloud_coverage = {from 0% to 100% every 5%} -> (20 ranges) 

kc = {from 0 to 1.4 every 0.1} -> (14 ranges)  

SZA = {from 0° to 80° every 2°} -> (40 ranges)  

 

As it was suggested in section 4.3.2 to use distribution-independent parameters to model the 
CRS deviation, the error model LUT is now also populated with the 100 percentiles (P0 to 
P100 every 1 percentile) of the irradiance estimate errors. For comparison purposes, the error 
model LUT will be also populated with the normal distribution moments MBE, MAE, SDTE and 
RMSE.  

The initial training of the error model follows then the methodology explained in section 4.1. 
The training is performed using  

N = 40 (number of stations used on the training) 

X = 60% (percentage of time span used for training) 

Y = 30% (percentage of time span used for validation) 

 

These 40 stations were chosen randomly during the training phase. A random seed is selected 
and saved for reproducibility of the results. The training of the model results on a 4-
dimensional LUT of shape (20, 14, 40, 105) in which the first 3 dimensions correspond to 
ranges of the 3 input parameters described above (i.e., cloud_coverage, kc and SZA 
respectively) and the 4th dimension corresponds to the different metrics/moments calculated, 
which in our case are: 

 metrics = {from P0 to P100 every 1 percentile} + {MBE, MAE, STDE,  

     RMSE} -> (105 metrics) 

 

The datapoint-wise CRS irradiance uncertainty is derived for the other 26 stations in the 
database and the other 30% of the time instances in order to respect the spatio-temporal 
separation. For each CRS instance in the validation dataset an uncertainty estimation is 
inferred using the CRS model inputs (i.e., cloud_coverage, kc and SZA) as inputs of the 
trained error model. Any uncertainty interval level from the 100 percentiles can be chosen as 
an uncertainty estimation of the respective instance.  

4.4.2 Assessment of the quality of the uncertainty estimations in different 
sky situations 

To begin the assessment of the error estimates obtained with our model, we plot these 
estimates as time series per station. Figure 20 shows the GHI uncertainty inference on one 
example day for the station BSRN-GOB, which is a station that is known to be well represented 
by the CRS estimates. On the upper plot the ground observations are represented as the solid 
black line, the CRS estimates as a solid blue line, the 50% confidence intervals by the width 
between the green areas (P75 – P25) and the 90% confidence intervals by the width between 
the blue areas (P95 – P5). On the lower plot the normalized CRS parameters used as input of 
the error model are shown as dashed lines. As expected, when the station is under clear sky 
conditions (around 3/4ths of the selected day) we find that the 50% uncertainty interval is very 
narrow and that it contains almost all of the ground observations. This is due to the fact that 
under clear sky conditions there is a very low irradiance variability, therefore very low 
uncertainty on the irradiance estimate and the clear-sky model is known to perform very well 
even at a station in an aerosol-dominated regime as this one. Under cloudy conditions 
(between 08:00 and 09:00) the width of the 50% uncertainty interval increases considerably. 
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We also see, as expected, that for these variable conditions most of the ground observations 
stay inside the 90% confidence interval.             

 

 

Figure 20. GHI local uncertainty derived for the station BSRN-GOB on the day 2020-03-20. 
Upper of the graph: ground observation in solid black line, CRS estimate in solid blue line, 
50% uncertainty interval covered with the limits between the green areas (P75 – P25), 90% 

uncertainty interval covered by the limits between the blue areas (P95 – P5). Lower part of the 
graph: normalized CRS inputs to the LUT, i.e., SZA, KC and cloud coverage 

 

In the same way, Figure 21 shows the GHI uncertainty inference for an example day at the 
station BSRN-RUN which is known to be a difficult location to model with the CRS estimates. 
We find for this station generally a very similar behaviour to the one described above for the 
station BSRN-GOB. But here, we find that the confidence levels are wider that those found for 
BSRN-GOB. This is due to the fact that the probability to have a higher error for BRSN-RUN 
location is higher (more difficult location for the CRS model). Here also we see that most of 
the ground observation values are almost all well contained inside the 90% interval.   
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Figure 21. GHI uncertainty inference from the baseline error model for the stations BSRN-RUN 
on the day 2022-04-10. Same description as for Figure 20. 

Finally, Figure 22 shows the GHI uncertainty inference for the station SAURAN-RUN on a very 
cloudy day. For this difficult day, we see that the 90% confidence interval still follows the 
variability of the irradiance at all times and that it contains most the observed irradiance 
estimates.  
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Figure 22. GHI uncertainty inference from the baseline error model for the stations SAURAN-
CSIR on the day 2023-03-30. Same description as for Figure 20. 

4.4.3 Generalized assessment of the Quality of the uncertainty estimation 
of the localised error model  

 

In order to generalize the assessment of the quality of the localised error model, we move 
from the visual inspection of time series to an aggregated quantitative approach.  

The evaluation of a deterministic model is typically straightforward: predictions are point 
estimates, and standard performance metrics such as mean squared error (MSE) or mean 
absolute error (MAE) are used to assess how close the predictions are to the observed values. 
Probabilistic models introduce an additional layer of complexity. Rather than outputting 
deterministic predictions, they provide a probability distribution of possible outcomes which 
complicates the evaluation process: the model cannot be judged solely by how close its mean 
prediction is to the target value, but the quality of the entire predictive distribution must be 
assessed.  

Two fundamental aspects characterize the evaluation of probabilistic predictions: 

• Reliability (or calibration): A well-calibrated model outputs predictive distributions 

whose uncertainty matches the observed frequencies. For instance, a 90% prediction 

interval should contain the true value approximately 90% of the time. Poor calibration 

indicates that the model is either underconfident or overconfident. 

• Sharpness: Sharpness refers to the concentration or narrowness of the predictive 

distributions. Among different calibrated models, sharper model is preferred, as it 

reflects more confident predictions. 
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First, we look into the probabilistic calibration of the developed model using a reliability 
diagram. This diagram assesses the proportion of CRS irradiance errors that respect the 
probabilistic hypothesis (also called probabilistic contract) of our model. This diagram shows 
the relation between the nominal percentile level (𝑝) and the empirical percentile level (𝜀𝑝). 

For a given model irradiance inference i of nominal percentile level p at a time t, 𝑖𝑡
𝑝
, there exists 

a corresponding ground observation reference data point at time t, 𝑦𝑡. We define a variable 

𝛽𝑡
𝑝
 as the unitary function that satisfies 

𝛽𝑡
𝑝

= 1 {𝑦𝑡 < 𝑖𝑡
𝑝

 } =  
0   otherwise

1   if   𝑦𝑡<𝑖𝑡
𝑝

 
                                                                                            (4.1) 

The empirical level of percentile p, 𝜀𝑝, is then define as the average of 𝛽𝑡
𝑝
 for all times 

𝜀𝑝 =  
1

𝑇
∑ 𝛽𝑡

𝑝𝑇
𝑡=1                                                                                                                    (4.2) 

 

Figure 23 shows the reliability diagram calculated for our error model. On the X-axis we show 
the nominal percentile levels p for which the model has calculated estimates using the training 
data and the Y-axis shows the percentage of values that respected the estimated percentile 
level on the validation data (empirical level 𝜀𝑝). Consequently, the perfectly calibrated model 
will have a reliability diagram that lies on the diagonal, i.e., the probability hypothesis 
calculated on the training data was found in the same exact way on the validation data. 

 

 

Figure 23. Reliability diagram for the GHI component of the error model. Nominal percentile 
level vs empirical percentile level (calculated) from the error model. Validation stations are 
shown with the different colored dotted lines. The average reliability of the model is shown 

with the bold solid black line.  

Figure 23 shows the reliability curve for each validation station with individually colored dotted 
lines. This figure also shows the overall stations aggregated reliability curve in a bold black 
line, which is calculated as the mean value of the reliability curves from all locations. We see 
that in general the model is well calibrated. The worst calibrated station is BSRN-IZA, which 
is known to be a difficult station to model due to its high altitude (2372 m). All other stations 
seem to oscillate near the diagonal. This means that the uncertainty levels estimated by the 
localised error model represent quite well the uncertainty levels found on the CRS irradiance 
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estimates on the validation data. It is worth to note that the validation dataset used for this 
assessment is separated in space and time from the training data, which means that the 
assessment is done on locations and time spans that the model has never seen.    

In order to assess the sharpness of the error model, we first estimate the sharpness on every 
individual validation station. As a measurement of sharpness, we calculate the mean width of 
the different confidential intervals for all inferences of our error model. Given the width 𝜔 of 

confidence interval 𝑐 at a time 𝑡, 𝜔𝑡
𝑐 defined as 

𝜔𝑡
𝑐 = 𝑖𝑡

�̅�
−  𝑖𝑡

�̿�
,                                                                                                                       (4.3) 

where the confidence interval 𝑐 is calculated from the upper percentile level �̅� and lower 
percentile level �̿� as 

 𝑐 = 90        then  �̅� = 95 ,  �̿� = 5      

𝑐 = 80        then   �̅�  = 90 , �̿� = 10 

                                                 … 

then the width 𝜁 for the confidence interval 𝑐 , 𝜁𝑐 , is defined as the mean width of 𝜔𝑡
𝑐 on all t 

𝜁𝑐 =
1

𝑇
∑ 𝜔𝑡

𝑐𝑇
𝑡=1                                                                                                                      (4.4) 

Figure 24 shows the sharpness of the error model by means of the average widths of the 
interval confidence levels 𝑐 for the validation stations. 

 

Figure 24. Sharpness diagram for the GHI component of the error model per validation station. 
Each colored dotted lines represents one station. The average sharpness of the model is 

shown with the bold solid black line  

The widths calculated for each station are shown on colored doted lines. As expected we see 
that the interval width increases with increasing confidence level. We see a general faster 
increase of the widths from 𝑐 =60 to 𝑐 =90 which must be due to the increase in irradiance 
estimate errors related to partially cloudy situations (highly variable irradiance changes). It is 
worth noticing that there is more than a factor 2 between the sharpest station (BSRN-GOB 
which is a well modelled station) and the less sharp station (BSRN-LYU which is a costal 
station less than 1km to the ocean), which is a reasonable result. This is a clear indicator that 
the irradiance uncertainty is location dependent but more important still, that the error model 
developed here is able to correctly quantify the uncertainty levels depending on the location 
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characteristic. The overall error model sharpness, shown in the bold solid black line is a 
characteristic of the model itself an is useful for comparing with other error models or monitor 
the evolutions on the CRS model itself. 

4.5  Inference of the localised error model for deterministic estimate 
corrections. 

After having assessed the reliability of the probabilistic error estimate, the potential of the 
localised error model to deterministically correct irradiance estimate is assessed. Metrics 
analyzed are MBE, MAE, and STDE. The study is motivated by the general discussion to 
either provide a probabilistic error estimate or to use the error model to do any post-processing 
correction of the CRS output itself.  

This correction is tested with 2 methods to assess the need for a probabilistic error description 
versus a gaussian distribution error description of the error model:  

• P50 correction: correction performed by subtracting the median (P50) of the bin 

distribution to the CRS estimate  

• µ correction: correction performed by subtracting the MBE (µ) of the bin distribution 

to the CRS estimate   

The biases obtained on the 26 validation sites for the 2 correction methods are shown in  
Figure 25. From the geographical location of the validation sites (top diagram of Figure 25), 
the highest biases seem to come from the desertic sites (BSRN-SBO and enerMENA-ADR) 
or elevated sites (ESMAP-KAO). Small distance to the coast does not seem to be correlated 
with high bias values on the uncorrected or corrected CRS estimates. Looking at the overall 
performance of the biases for the selected 26 stations (bottom diagram of Figure 25), the µ-
correction tends to increases the general underestimation of the CRS estimates (to higher 
negative values). In the other hand, the P50-corrections tend to decrease the general bias of 
the CRS estimates almost to a 0 value on average. Nevertheless, both methods deteriorate 
metrics of many stations, and both methods have a significant number of stations where they 
provide decreased accuracy metrics. Only on average the effects level out.        

The MAE obtained on the 26 validation sites for the 2 correction methods are shown in Figure 
26. The tendencies for MAE are quite different to those obtained for the MBE. From the 
geographical point of view (top diagram of Figure 26) we see that the distance to the coast 
seems to be highly correlated with the MAE of the site, i.e., sites near the coast present higher 
deviations.  From bottom diagram of Figure 26, we see that both corrections tend to improve 
the MAE metrics. The uncorrected estimates show a MAE value of 73 W/m² while the µ-
correction a value of 71.4 W/m² and p50-correction a value of 69 W/m².  

Overall, both corrections improve the MAE at most stations. The absolute MAE improvements 
are low (1.6 W/m² for the µ-correction and 4W/m² for P50 correction). Nevertheless, 
improvement achieved by the p50-correction doubles the improvement obtained by the µ-
correction 

Finally, the STDE found on the 26 validation sites are shown in Figure 27. The STDE metric 
presents the same geographical tendencies as the one described for the MAE. However, the 
STDE improvements achieved by the µ-correction almost systematically outperforms the 
improvements achieved by the p50-correction.  
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Figure 25. Bias of the deterministic GHI corrections for the 26 validation sites. Blue color 
represents the uncorrected GHI estimate, the orange color represent the µ-corrected GHI 

estimated (using the MBE of the bin) and the green color represents the P50-corrected GHI 
estimate (using the median of the bin). Top figure: red triangles represent the 40 sites used for 

training and the colored circles represents the 26 sites used for the GHI estimate inference, 
where the size of the circle is proportional to the deviation found for each correction.  Bottom 
figure: values of the uncorrected, µ-corrected and P50-corrected irradiance estimates for the 
26 validation sites. The last bar group (“mean”) correspond to the average value for the 26 

sites.  
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Figure 26. MAE of the deterministic GHI corrections for the 26 validation sites (same 
description as in Figure 25). 
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Figure 27. STDE of the deterministic GHI corrections for the 26 validation sites (same 
description as in Figure 25). 

 

The results from Figure 25, Figure 26 and Figure 27 show that there is are improvements on 
the statistical error metrics when applying corrections based on the localised error model 
developed in this study. In particular, the best improvement was obtained on the MBE when 
using the localised P50-corrections. This method should be analysed further by the CAMS 
CRS development team to assess the potential of an online bias correction. Nevertheless, the 
overall impact is small and the value of the probabilistic distribution of the possible irradiation 
values may be rated as more relevant to users.     
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5 Localised error model 2: uncertainty inference based on Deep 
Learning  

As an alternative to the parametric binning approach shown in section 4, a deep learning 
approach has also been studied to model the uncertainty distribution of the CRS. The objective 
of this second approach is to statistically learn the error distribution of the CRS from a 
reference data set using a supervised statistical model based on Machine Learning. The 
inherent advantage of such a model is that it is computationally efficient and can be very 
accurate. Its disadvantages are that the relationship with the physical modelling is not explicit, 
and it requires a large amount of reliable reference data. The fact that his method can be 
computational efficient make it a good candidate for a future implementation in the operational 
CRS service. 

5.1 Methodology 

Various methodologies can be used to estimate the uncertainty of the results of a model as a 
function of different related variables. Probabilistic programming models, such as Bayesian 
neural networks or variational inference, are based on a Bayesian formulation of the problem 
that allows a-priori uncertainty to be considered. They also allow to assess the aleatoric and 
epistemic uncertainties. However, it is difficult to implement such a model in an operational 
context, as sampling is required to assess the a-posteriori distribution.  

Another approach is to predict the different quantiles of uncertainty using quantile regression. 
A neural network can be used where the pinball loss is used as cost function. Quantile 
regression does not require any assumptions about the shape of the modelled distribution. 
The quantiles of interest must be defined a priori. We decided to choose a more generic 
approach in which the parameters of a parametric distribution are predicted as a function of a 
set of related variables using a neural network. In this work, we selected the Johnson SU 
distribution over more commonly used alternatives (e.g., Gaussian, log-normal, or beta 
distributions) due to its ability to independently control the first four moments—mean, variance, 
skewness, and kurtosis. 

The Johnson SU distribution is a flexible four-parameter probability distributions that can 
model a wide range of shapes, including skewed and heavy-tailed behaviours. It is 
parameterized by two shape parameters, along with location and scale, enabling it to 
approximate many real-world distributions with varying asymmetry and tail behaviour. Its 
probability density function is given by: 

(𝑥|𝜂, 𝛾, 𝜆, 𝜀) =
𝛿

𝜆 √2𝜋

𝜂

√1+(
𝑥−𝜀

𝜆
)

2
 𝑒𝑥𝑝 (−

1

2
(𝛾 + 𝛿 𝑎𝑠𝑖𝑛ℎ (

𝑥−𝜀

𝜆
))

2

)                                                  (5.1) 

Where 𝛾 ∈ ℝ and 𝛿 > 0 are shape parameters controlling skewness and kurtosis, while 𝜀 ∈ ℝ 
and 𝜆>0 are location and scale parameters, respectively. It can be noted that the 

transformation 𝑧 = 𝛾 + 𝛿 𝑎𝑠𝑖𝑛ℎ (
𝑥−𝜀

𝜆
) maps the variable 𝑥 to a standard normal variable 

𝑧~𝒩(0,1).  

An illustration of the flexibility of the Johnson SU distribution is given in Figure 28, where 
different parameters show the ability of this family of distribution to reproduce different 
skewness and kurtosis. 
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Figure 28. Form of the Johnson SU distribution for different set of parameters illustrating the 
ability of this distribution to reproduce different skewness and kurtosis. 

The four parameters of the distribution are predicted for each time step using a neural network 
as a function of 6 key variables for the calculation of the solar radiation in CRS. The selected 
predictors are: 

• The clear sky index calculated with CRS estimates (Kc) 

• The cloud type  

• The cloud cover  

• The cloud optical depth  

• SZA and Solar Azimuth Angle (SAA) 

As illustrated in Figure 29, a fully connected neural network has been used with two hidden 
layers containing each 64 neurons. The neural network has been coupled with the Johnson 
SU distribution using the TensorFlow Probability (TFP) library.  

 

 

Figure 29. Schematic representation of the neural network used to predict the different 
parameters of the Johnson SU distribution as a function of the six selected parameters. 

The neural network coupled to the Johnson SU distribution was trained using the negative log 
likelihood as the cost function. The maximum number of epochs was set at 200 with early 
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stopping based on monitoring the evolution of the Negative Log Likelihood (NLL) on a 
validation dataset. To avoid the effect of random initialization of the weights of the neural 
network on the result, the training was repeated 100 times and the run giving the lowest 
negative log probability on the validation dataset was selected. 

The approach described was first tested on a limited number of stations, as the present work 
is a first proof of concept of the method. The list of stations used are given in Table 2. 

Table 2 : Metadata for the BSRN ground stations used for the training and evaluation of the 
probabilistic model 

Station name Latitude (°) Longitude (°) Elevation (m) Period used 

BSRN-CAB 51.9680 4.9280 0 01/2010 – 12/2018 

BSRN-CAR 44.0830 5.0590 100 01/2010 - 12/2018 

BSRN-CAM 50.2167 -5.3167 88 08/2010 - 07/2017 

BSRN-PAL 48.7130 2.2080 156 01/2016 - 12/2018 

 

An important aspect of implementing a supervised model is the separation between the 
training/validation data in the reference dataset. As shown in Table 3, we used measurements 
from three stations over the period 2010-2015 for training and validation. For each station, 
80% and 20% of the data were used for training and validation respectively. We considered 
two subsets of test data. The first subset includes the same stations used for training and 
validation, but separated in time (2016-2018). The second subset includes measurements 
from locations and time periods different from those used for training and validation. These 
two subsets of test data are referred to as test-T (separated in time) and test-ST (separated 
in time and space) respectively. They will be used to assess the model's ability to generalise 
over time and space. This separation is summarized in Table 3. 

 

Table 3 : Spatio-temporal separation for the preparation of the training, validation and test 
phases. 

 Temporal split 

2010-01-01 – 2015-12-31 2016-01-01 – 2018-12-31 

S
p

a
ti

a
l 
s

p
li

t CAB 

CAR 

CAM  

Training dataset (80%) 

 

Validation dataset (20%) 

Temporal (T) test dataset 

PAL Discarded Spatio-temporal (ST) test dataset 

 

5.2 Evaluation of the deep learning-based error model  

5.2.1 Quality indicators used for validation 

We have previously seen the reliability and sharpness indicators are well suited for quantifying 
the performance of a probabilistic model. An extremely narrow distribution may rarely contain 
the true value and would thus be poorly calibrated. Conversely, a model may be well 
calibrated, but if its sharpness is too low, it will be less informative and of limited relevance. It 
is therefore important to consider these two aspects together, as calibration measures the 
statistical consistency between predictions and observed results, while sharpness measures 
the informativeness of predictions. Optimally, a probabilistic model should strike a balance 
between these two aspects: being as accurate as possible while remaining well calibrated. 
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The probabilistic indicators described below are used in this section to quantify this dual 
objective. 

The prediction interval 𝑄𝛼(𝑋𝑖) at confidence 𝛼, calculated for input 𝑋𝑖, is defined as: 

𝑄𝛼(𝑋𝑖) = [𝐿𝛼(𝑋𝑖); 𝑈𝛼(𝑋𝑖)] (5.2) 

 

Where 𝐿𝛼(𝑋𝑖) and 𝑈𝛼(𝑋𝑖) are respectively the quantiles at levels 𝛼/2 and 1− 𝛼/2 predicted by 

the probabilistic model for the input 𝑋𝑖. 

The interval 𝑄𝛼(𝑋𝑖) represents the prediction interval within which the actual value of 𝑦𝑖 is 

expected to lie with probability 𝛼, assuming the model is well calibrated. 

The Prediction Interval Coverage Probability (PICP) evaluates the model reliability or 
calibration. It can be expressed as: 

𝑃𝐼𝐶𝑃𝛼 =
1

𝑛
∑ 𝟏{𝑦𝑖 ∈ 𝑄𝛼(𝑋𝑖)}

𝑛

𝑖=1

 
(5.3) 

Where the indicator function 𝟏{𝑦𝑖 ∈ 𝑄𝛼(𝑋𝑖)} equals 1 if 𝑦𝑖 is included in the interval 𝑄𝛼(𝑋𝑖), 
and 0 otherwise. 

If the model is perfectly calibrated, 𝑃𝐼𝐶𝑃𝛼 should be equal to 𝛼.  

The Expected Calibration Error (ECE) is a more general metric assessing the discrepancy 
between predicted and observed coverage of prediction intervals across multiple confidence 
levels. It evaluates how well the model's predicted quantiles correspond to empirical 
frequencies, as such it is a perfect mean to assess the model calibration or reliability. For a 

set of confidence levels {𝛼𝑏}𝑏=1
𝐵 ∈ [0; 1], lower quantiles 𝐿𝛼𝑏

(𝑋𝑖) can be predicted by the model 

such that: 

𝑃𝑟 (𝑦𝑖 ≤ 𝐿𝛼𝑏
(𝑋𝑖)) = 𝛼𝑏 (5.4) 

 

Empirically, for each level 𝛼𝑏, the coverage can be assessed as follows: 

𝐶𝑜𝑣𝑒𝑟𝑎𝑔𝑒(𝛼𝑏)  =
1

𝑛
∑ 𝟏{𝑦𝑖 ≤ 𝐿𝛼𝑏

(𝑋𝑖)}

𝑛

𝑖=1

 
(5.5) 

 

Where the indicator function 𝟏{𝑦𝑖 ≤ 𝐿𝛼𝑏
(𝑋𝑖)} equals 1 if 𝑦𝑖 is less than or equal to 𝐿𝛼𝑏

(𝑋𝑖), and 

0 otherwise. 

The ECE is then defined as the average absolute difference between the empirical coverage 
𝐶𝑜𝑣𝑒𝑟𝑎𝑔𝑒𝛼𝑏

 and the confidence levels: 

𝐸𝐶𝐸 =
1

𝐵
∑|𝐶𝑜𝑣𝑒𝑟𝑎𝑔𝑒(𝛼𝑏) − 𝛼𝑏|

𝐵

𝑏=1

 
(5.6) 

This metric evaluates how well the predicted cumulated distribution function (CDF) aligns with 
the observed data, and a lower ECE indicates better calibration of the model’s predictive 
distribution. This quantity can be visually interpreted using a calibration plot, which displays 
the empirical coverage as a function of the nominal confidence levels. In this plot, a perfectly 
calibrated model corresponds to the identity line (i.e., coverage equals confidence level). ECE 
then quantifies the average absolute vertical distance between this identity line and the 
model’s coverage curve, summarizing the overall calibration performance. 
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The Prediction Interval Normalized Averaged Width (PINAW) measures the sharpness of a 
probabilistic model by quantifying the average normalized width of the confidence intervals 
𝑄𝛼(𝑋𝑖): 

𝑃𝐼𝑁𝐴𝑊(𝛼) =
1

𝑛
∑

𝑈𝛼(𝑋𝑖) − 𝐿𝛼(𝑋𝑖)

𝑅

𝑛

𝑖=1

 
(5.7) 

Where 𝑅 = 𝑦𝑚𝑎𝑥 − 𝑦𝑚𝑖𝑛 is the range between the maximum and minimum values 𝑦𝑖. This 
normalization ensures that the prediction interval widths are expressed relative to the scale of 
the target variable, making the PINAW dimensionless and comparable across different 
datasets or targets. 

While PINAW is a widely used measure to assess sharpness, it is inherently dependent on a 
chosen confidence level. This dependency limits its utility to assess the global sharpness of 
the model. An alternative approach is to quantify sharpness using the mean predictive 
standard deviation (MPSD) across forecasted distributions which is simply the average value 
of the distribution 𝑃𝑖 predicted at each time step i: 

𝑀𝑃𝑆𝐷 =
1

𝑛
∑ 𝜎(𝑃𝑖)

𝑛

𝑖=1

 
(5.8) 

This metric captures the average spread of the predictive distributions over the dataset. A 
model with lower average standard deviation produces more concentrated (i.e., sharper) 
predictions. This measure does not rely on any specific prediction interval. Although the mean 
predictive variance would be a more mathematically rigorous choice, we adopt the standard 
deviation here for interpretability: the standard deviation has the same units as the predicted 
quantity, making the results more accessible and easier to interpret.  

Finally, the Continuous Ranked Probability Score (CRPS) is a proper scoring rule that jointly 
assesses calibration and sharpness in a single metric. It quantifies the difference between a 
forecasted cumulative distribution function (CDF) and the observed outcome, thus providing 
a measure of forecast performance that accounts for both calibration and sharpness. For a 
predictive cumulative distribution function F and an observed value y, the CRPS is defined as: 

CRPS(𝐹, 𝑦) = ∫ (𝐹(𝑥) − 𝟏{𝒙≥𝒚})
2

+∞

−∞

 𝑑𝑥 
(5.9) 

 

where 𝟏{𝒙≥𝒚} is the indicator function equal to 1 if 𝒙 ≥ 𝒚 and 0 otherwise. 

The CRPS measures the squared difference between the forecasted probability and the actual 
outcome across all possible threshold values. A lower CRPS indicates a better probabilistic 
forecast, as it corresponds to a CDF closer to the step function representing the observed 
value. 

While global metrics described above offer high-level insights, the evaluation of a probabilistic 
model requires conditional analyses. These allow to detect overconfidence, underconfidence, 
and to understand regions where the model work well or requires improvement. A conditional 
evaluation as a function of the clearsky index provided by the CRS will be conducted. 

 

5.2.2 Validation of the inference of the Machine learning based error 
model  

Global metrics of the probabilistic model are given in Table 4 for the training, validation and 
the two test datasets. We can observe that the overall performances are similar for the training, 
validation and T-test dataset. Lower performances are observed for the ST-test dataset. These 
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global metrics show that the model generalizes well temporally but less spatially. These results 
will be further analysed in complementary analyses presented below. 

Table 4 : Global metrics of the model for the training, validation and two test datasets 

 Number of 
values 

Average  
kc 

NLL CRPS Coverage:  
ECE 

Sharpness: 
𝑬(𝝈𝒑𝒓𝒆𝒅(𝒕)) 

Training 
dataset 

213 858 0.68 -0.7276 0.0423 0.0224 0.1601 

Validation 
dataset 

56 983 0.67 -0.7326 0.0422 0.0050 0.16424 

T test  
dataset 

120 343 0.68 -0.7405 0.0425 0.0045 0.1596 

ST test 
dataset 

47 450 0.66 -0.5392 0.0469 0.0602 0.1653 

 

Some examples of the model output are given in Figure 30 and Figure 31. We can see in 
Figure 30 that the spread of the probabilistic model is lower in the absence of cloud than in 
broken clouds and overcast situations. In all cases, the spread seems to reflect the uncertainty 
of CRS, especially in broken cloud situation. We can also note that the median of predicted 
values by the probabilistic model is closer to the measurements than the estimates from CRS 
in cloud-free and overcast situation. 

The cases illustrated in Figure 31 are also cloud-free, broken cloud and overcast situations, 
but where the probabilistic model shows some limitations. For these cases in the cloud-free 
and overcast situations the median predicted by the probabilistic model is less accurate than 
CRS estimates. In the variable conditions, some observed irradiance spikes are not included 
in the range of values predicted by the model, indicating that the model can be underdispersive 
in some situations. 
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Figure 30 : Comparison of the output of the probabilistic model with CAMS Radiation service 
(green) and measurements (red dotted lines). The coloured area represents the confidence 

interval of the probabilistic model and the black line the median of the predicted distribution. 
The upper, middle and lower graph corresponds to a cloud-free, broken sky and overcast 

situation respectively. 
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Figure 31 : Same as Figure 30 with issues observed in the probabilistic model. 
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To verify whether the probabilistic model captures the bias of the CRS estimates, the mean of 
the probabilistic model, CRS output and measurements were calculated for different classes 
of clearsky index calculated with CRS. The results are shown in Figure 32 for the training, 
validation and the two test datasets.  

An underestimation of the true average kc is observed at low kc values (black curve above 
blue line), while an overestimation is observed at high kc values (black curve below blue line). 
This is true for the four different datasets. The mean predicted by the model is represented by 
an orange line. These values are very close to the average of measurements for all four 
datasets. This confirms that in, addition to predicting the distribution of the error the 
probabilistic model, the model captures the bias of CRS perfectly. 

 

Figure 32 : Observed and predicted mean of the clearsky index for different classes of CRS 
clearsky index. The different plots represent results obtained on the training, validation, as 

well as on the two test datasets. 

In the same way, the predicted standard deviation is compared to the empirical standard 
deviation of the CRS errors in Figure 33. For this analysis, the data has been binned according 
to the predicted standard deviation. Then, for each of these bins, the standard deviation of the 
error has been calculated. In an ideal probabilistic forecast, the predicted mean (blue line) 
should be equal to the empirical standard deviation of the error (orange line). 

Figure 33 shows that the empirical standard deviation of the error is greater than the predicted 
standard deviation for the training, validation and the two test datasets, confirming the previous 
observations that the model is underdispersive. It can also be observed that the predicted and 
empirical standard deviations agree at low values of the predicted standard deviation for the 
training, validation and test T datasets. Conversely, the model is significantly more 
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underdispersive at low values of the predicted standard deviation for the ST dataset than for 
the three other datasets.  

 

Figure 33 : Comparison of the predicted standard deviation by the model with the empirical 
mean of the standard deviation of the error of CRS for training, validation and the two test 

datasets. 

To verify the calibration of the model, reliability plots for the training, validation, test-T and test-
ST datasets are given in Figure 34.  

Reliability plots are diagnostic tools used to assess the coverage of a probabilistic model. They 
evaluate whether predicted probabilities correspond to observed frequencies, i.e. the 
calibration of the model. A well-calibrated model produces probabilities that match the 
empirical frequencies of the measurements. To construct a calibration plot, predicted 
probabilities are grouped into bins, and for each bin, the average predicted probability is 
compared to the empirical frequency of the observations. Ideally, the points lie on the identity 
line, indicating perfect calibration. Deviations from this line reveal systematic biases: forecasts 
that are overconfident or underconfident.  

Figure 34 figure shows that the model is well calibrated for the validation and test T datasets. 
There is a slight overconfidence for the training dataset and an important overconfidence for 
the test ST dataset. This difference in calibration for the test ST dataset is consistent with the 
underestimation of the predicted standard deviation observed for low values of the standard 
deviation of kc in Figure 33. 
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Figure 34 : Reliability plot comparing predicted probabilities to observed frequencies. The 
diagonal line represents ideal calibration, where predicted probabilities match the true 

empirical frequencies. The model data are represented by blue lines. 

To analyze the calibration and sharpness of the model in more detail, PINAW and PICP were 
calculated for 10 bins of the clearsky index calculated with CRS and confidence levels of 95, 
90, 80 and 50 %. The results are shown in Figure 35, Figure 36, Figure 37 and Figure 38 for 
the training, validation, test-T and test-ST datasets respectively.  



CAMEO  
 

D4.4 Localised Reliability Model for Radiation              51 

 

 

Figure 35 : PINAW (blue curve) and PICP (orange curve) as a function of the clearsky index 
provided by CRS (x-axis) for confidence intervals of 95, 90, 80 and 50% (upper left, upper right, 

lower left and lower right plots, respectively) assessed for the training dataset. 

 

Figure 36 : same as Figure 35 for the validation dataset. 
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Figure 37 : same as Figure 35 for the temporal split test dataset. 

 

Figure 38 : same as Figure 35 for the spatio-temporal split test dataset. 
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We can see that – as expected - the model is well calibrated for the training and validation 
dataset: the PICP (orange line) is close to the different values of the target coverage (grey 
dashed lines). This is also true for the test-T dataset, further confirming earlier observations 
of good temporal generalization of the model. For the Test-ST, the coverage is less optimal: 
we can observe that the model is overdispersive at low kc values and underdispersive at high 
kc values. This is consistent with the results shown in Figure 34. 

The dependence of the PINAW with the kc is similar for all datasets: the spread of the model 
is small for low and high values of kc and higher at intermediate values. This is consistent with 
the expectation that the uncertainty of CRS is the highest in broken cloud conditions that 
corresponds to intermediate values of kc. 

We can see that PINAW values in the training dataset are significantly lower than in the 
validation and test datasets. This is particularly pronounced for the bin corresponding to kc=1 
(cloud free situations). The fact that the PINAW is significantly lower in the training than in the 
test dataset, while the model is underdispersive in the test dataset, could be due to 
overtraining. This could be remedied by reducing the size of the network and by increasing 
the number of stations used for training. 
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6 Conclusions 

A well depurated CAMEO reference database was created to be used for the development of 
this work and CRS developments in general. The base for the database is the collection of 
ground observations in the ARMINES THREDDS server. First an extended and very strict 
quality check procedure has been applied to all ground observations available in order to allow 
only the most reliable data points. The retained ground observations (66 stations) were co-
aligned with the CRS operational expert mode output. The procedure followed to create this 
database maximizes the probability that the deviations found on any posterior analysis from 
the data come from the CRS model itself and not from errors/inconsistencies on the ground 
observations.  

In this work two different approaches were developed to model the localised uncertainty 
distribution of the CRS radiation estimates. These approaches investigated the suitability of 
the input data space at the point of interest (clouds properties, aerosols, water vapour, ozone, 
surface albedo, solar geometry, etc.) as predictors of the local irradiance error uncertainty.  
The first approach is based on the parametric binning of the data input space in order to 
characterize the individual uncertainty distribution per bin. The distributions found are then 
stored in a LUT and use to infer a local uncertainty distribution of the data point of interest. In 
the second approach a model of localised irradiance uncertainty was develop using a neural 
network to predict the parameters of a flexible parametric distribution as a function of data 
input space. Once trained, the neural network is used to infer the parameters that describe 
the uncertainty distribution of the data point of interest. In this approach a Johnson SU 
distribution was chosen over more commonly used alternatives (e.g., Gaussian, log-normal, 
or beta distributions) due to its ability to independently control the first four moments—mean, 
variance, skewness, and kurtosis. 

Preliminary tests were conducted to evaluate the two approaches to model the uncertainty of 
CRS. The first results are very encouraging. Both probabilistic models capture very well the 
bias of CRS in the different tests considered (generalisation in time and generalisation in 
space and time). It was also shown that both methods are able to capture a reasonable 
uncertainty value of the individual spatio-temporal CRS estimates. 

The parametric based model evaluation used all the available data in the CAMEO refence 
dataset. In order to replicate the typical use case of the CRS, the data was separated in space 
and time for the training and inference of the uncertainty distributions. The error model seems 
to be very well calibrated. The stations known to be difficult to model for the CRS showed the 
worst calibration and sharpness, which is a reasonable and expected result. The error model 
was tested to infer the uncertainty distributions on time series outputs on many days/stations 
which include all types of sky conditions (clear, overcasted, cloudy). For all cases tested, the 
width of the confidence intervals correlated well with the local variability situation, i.e., narrow 
intervals in clear and overcasted situations and wider intervals in variable situations.  

The deep learning-based model was found perfectly calibrated when tested on the same 
stations that were used for the training, but a significant decrease in accuracy is observed 
when the model is applied to stations that were not used for training. A conditional evaluation 
indicates that in the latter case, the model is over-dispersive at low values of the clearsky 
index and under-dispersive at high values of the clearsky index. This lack of spatial 
generalisation can be attributed to an overtraining issue. Further experiments will be 
conducted with a smaller network and more data to address this issue. The use of a deep-
learning model requires a dedicated infrastructure (GPU) making a direct implementation of 
the approach in the operation CAMS radiation service difficult. However, a simple approach 
to use the proposed methodology in an operational context could be to pre-calculate the four 
parameters of the distribution for all possible combinations of the input parameters. The results 
could be used in a lookup table to emulate the neural network in a simple operational code 
very similar to McClear and McCloud.  
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7 Outlook 

Both error models developed in this work show sensible and encouraging results and are 
potential candidates for an implementation on the operational CRS service. Even so, both 
models should continue to be tested on a larger number or different combinations of predictors 
from the input data space. The improvement and deterioration of the quality indicators should 
be evaluated with the new predictor combinations and the computational efficiency should be 
continuously assessed in view of an optimal operational implementation in the CRS.  

The uncertainty distribution of a local irradiance estimate can be inferred from the error models 
developed in this work. This amount of uncertainty information could be overwhelming for the 
typical CRS user. Discussion have already started with the CRS development team and the 
directly with the users to define simple and useful uncertainty indicators to be implemented as 
an operational CRS product. The quest here is to find the indicators that will help the typical 
user to better understand the data and ultimately take better decisions. This is not an easy 
task, as there is always an equilibrium to be found between the amount of information given 
and its interpretability. This effort has already stared on the different conferences were the 
CRS development teams was present (e.g.,: ICEM2025, EGU2025) and will continue as a 
CRS team task.   
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