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1 Executive Summary 

This report presents a first evaluation of a new superobservation method for NO₂ satellite 

observations to be used in the CAMS global assimilation system. The new method improves 

the superobservation uncertainty estimates particularly by accounting for the spatial 

correlations between TROPOMI observations within one model grid box. The new 

methodology was tested in an IFS-COMPO assimilation experiment carried out for the month 

December 2022 and compared to a reference experiment using the current NO₂ 
superobservation method. The resulting superobservations and associated superobservation 

errors were analysed, and the assimilation results were evaluated against independent 

measurements. In the new method larger errors were calculated over pollution regions north 

of 40°N (Europe, China), associated to a new estimate of the stratospheric error component. 

The overall impact on simulated surface NO2 concentrations in this particular system 

configuration and evaluation was found to be small, but some larger impacts may be expected 

in different configurations.   
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2 Introduction 

2.1 Background 

Monitoring the composition of the atmosphere is a key objective of the European Union’s 

flagship Space programme Copernicus, with the Copernicus Atmosphere Monitoring Service 

(CAMS) providing free and continuous data and information on atmospheric composition.  

The CAMS Service Evolution (CAMEO) project will enhance the quality and efficiency of the 

CAMS service and help CAMS to better respond to policy needs such as air pollution and 

greenhouse gases monitoring, the fulfilment of sustainable development goals, and 

sustainable and clean energy.  

CAMEO will help prepare CAMS for the uptake of forthcoming satellite data, including 

Sentinel-4, -5 and 3MI, and advance the aerosol and trace gas data assimilation methods and 

inversion capacity of the global and regional CAMS production systems.  

CAMEO will develop methods to provide uncertainty information about CAMS products, in 

particular for emissions, policy, solar radiation, and deposition products in response to 

prominent requests from current CAMS users.  

CAMEO will contribute to the medium- to long-term evolution of the CAMS production systems 

and products.  

The transfer of developments from CAMEO into subsequent improvements of CAMS 

operational service elements is a main driver for the project and is the main pathway to impact 

for CAMEO.  

The CAMEO consortium, led by ECMWF, the entity entrusted to operate CAMS, includes 

several CAMS partners thus allowing CAMEO developments to be carried out directly within 

the CAMS production systems and facilitating the transition of CAMEO results to future 

upgrades of the CAMS service.  

This will maximise the impact and outcomes of CAMEO as it can make full use of the existing 

CAMS infrastructure for data sharing, data delivery and communication, thus supporting 

policymakers, business, and citizens with enhanced atmospheric environmental information. 

 

 

2.2 Scope of this deliverable 

2.2.1 Objectives of these deliverables 

This deliverable reports on the ongoing efforts to develop and implement a novel 

superobservation methodology into an experimental version of IFS-COMPO. The 

superobservation method aggregates satellite-based data of trace gases to the CAMS grid. It 

mainly differs from the currently used method in CAMS by improving the aggregated 

observation uncertainties estimates. This is done by explicitly modelling spatial observation 

error correlations between individual satellite pixels, and by a novel approach to model the 

representativity error. The new method was first developed for TROPOMI NO₂ observations  

and will be extended to HCHO and potentially SO2 and CO. 
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2.2.2 Work performed in this deliverable 

In this deliverable the work as planned in the Description of Action (DoA, WP2.2 T2.2.1 and 

T2.2.2) was performed. 

 

Task 2.2: Thinning and data compression for new and existing satellite retrievals (KNMI, 

ECMWF) 

 

Task 2.2.1: Development of superobservations methodology with emphasis on the treatment 

of observation errors. Adapt and validate KNMI's superobservation approach for the use of 

NO₂ observations on TROPOMI and to support the CAMS grid. Extend to other variables, first 

to HCHO and later potentially to SO2 and CO. 

 

Task 2.2.2: Assimilation tests with new superobservations software and comparison with 

currently used data thinning method, followed by uptake of software by CAMS to support use 

of superobservations by IFS for NRT and reanalysis application. 

 

2.2.3 Deviations and counter measures 

Delays occurred during the project due to issues in the experimental setup. This was 

unfortunately identified only after the six-month assimilation experiments had been completed. 

The initial experiment results were disregarded, and new experiments were started. To adhere 

to the project timeline and produce this deliverable on time, only the single month of December 

2022 was evaluated for this report rather than the originally planned six-month period. The 

evaluation of the full six-month period will continue after the submission of this report.  

 

2.2.4 CAMEO Project Partners: 

 

ECMWF EUROPEAN CENTRE FOR MEDIUM-RANGE WEATHER 
FORECASTS 

Met Norway METEOROLOGISK INSTITUTT 

BSC BARCELONA SUPERCOMPUTING CENTER-CENTRO 
NACIONAL DE SUPERCOMPUTACION 

KNMI KONINKLIJK NEDERLANDS METEOROLOGISCH INSTITUUT-
KNMI 

SMHI SVERIGES METEOROLOGISKA OCH HYDROLOGISKA 
INSTITUT 

BIRA-IASB INSTITUT ROYAL D'AERONOMIE SPATIALEDE 

BELGIQUE 

HYGEOS HYGEOS SARL 

FMI ILMATIETEEN LAITOS 

DLR DEUTSCHES ZENTRUM FUR LUFT - UND RAUMFAHRT EV 
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ARMINES ASSOCIATION POUR LA RECHERCHE ET LE 
DEVELOPPEMENT DES METHODES ET PROCESSUS 
INDUSTRIELS 

CNRS CENTRE NATIONAL DE LA RECHERCHE SCIENTIFIQUE 
CNRS 

GRASP-SAS GENERALIZED RETRIEVAL OF ATMOSPHERE AND 
SURFACE PROPERTIES EN ABREGE GRASP 

CU UNIVERZITA KARLOVA 

CEA COMMISSARIAT A L ENERGIE ATOMIQUE ET AUX 
ENERGIES ALTERNATIVES 

MF METEO-FRANCE 

TNO NEDERLANDSE ORGANISATIE VOOR TOEGEPAST 
NATUURWETENSCHAPPELIJK ONDERZOEK TNO 

INERIS INSTITUT NATIONAL DE L ENVIRONNEMENT INDUSTRIEL 
ET DES RISQUES - INERIS 

IOS-PIB INSTYTUT OCHRONY SRODOWISKA - PANSTWOWY 
INSTYTUT BADAWCZY 

FZJ FORSCHUNGSZENTRUM JULICH GMBH 

AU AARHUS UNIVERSITET 

ENEA AGENZIA NAZIONALE PER LE NUOVE TECNOLOGIE, 
L'ENERGIA E LO SVILUPPO ECONOMICO SOSTENIBILE 
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3 Superobservation algorithms 

Observational data generally differ in resolution from the model. For instance, TROPOMI NO₂ 

data has a spatial resolution of 5.5 km × 3.5 km at nadir, which is significantly higher than the 

model resolution of the T511 grid (about 40 km × 40 km). Each CAMS model grid box is 

therefore covered by roughly 50 TROPOMI footprints. Since the NO₂ vertical column density 

varies strongly from one satellite footprint to the next, individual TROPOMI observations are 

not spatially representative. This is especially true over polluted regions where the TROPOMI-

instruments detects pollution plumes from localised sources. Individual TROPOMI 

observations can therefore not be directly compared against the model grid box’s vertical 

column density. To overcome this representativeness error, the measurement data is 

aggregated into so-called 'superobservations’ before being included in the CAMS system. A 

superobservation is a particular choice in how the measurement data is aggregated. This can 

be a random selection, an average or a more sophisticated algorithm. An effective 

superobservation algorithm maximizes the use of observational data, especially by carefully 

accounting for the uncertainty of the aggregated measurements. This step is especially 

important for ensuring that satellite information is optimally integrated into the data assimilation 

process. 

 

In this project, we propose and evaluate a new superobservation algorithm for the assimilation 

of TROPOMI NO₂ observations based on the work of Rijsdijk et al (2024). First, in section 

Error! Reference source not found., we will discuss the current method used in the CAMS 

system. In section Error! Reference source not found., we will discuss the theoretical 

background of the proposed system, highlighting the differences to the current method. The 

subsequent chapters will present the results of the evaluation of the assimilation experiments. 

 

3.1 Current superobservation method. 

The operational global system of CAMS, the Integrated Forecasting System (IFS), provides 

operational global forecasts and analysis of the atmospheric composition. A central part of the 

system is the assimilation of observational data from different satellites.  

The IFS uses an incremental 4D-Var data assimilation system as described in Inness et al. 

(2015). The atmospheric composition fields are included in the control vector and minimized 

together with the meteorological control variables. The CAMS system uses 12 h assimilation 

windows from 03:00 to 15:00 UTC and 15:00 to 03:00 UTC and two minimizations at spectral 

truncations T95 (∼210 km) and T159 (∼110 km). Input to the assimilation system are 

observation and background model values, together with estimated observational and 

background errors. These errors determine the relative weight given to the observations and 

the background in the analysis. 

The superobservation method currently used in the IFS assimilation system to overcome the 

representativeness error between the observational satellite data and the reduced gaussian 

model grid is to take a simple average of the observations within one grid box of the reduced 

Gaussian grid. Averaging the data within a grid box reduces the random error component and 

the representativeness errors due to unresolved small-scale features that are seen in 

TROPOMI data but are not resolved in the model. The underlying assumption in taking an 

average is that all the observations and observation errors within one grid box are fully 

correlated. We know that this is an overestimation of the true observation uncertainty (Rijsdijk 
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et al, 2024). This can intuitively be understood as multiple independent measurements (fully 

uncorrelated) resulting in a lower overall uncertainty.  

CAMS uses a wide range of atmospheric composition data besides TROPOMI-measurements 
that come in various data formats (e.g. netCDF, HDF, BUFR, ASCII, etc.). To effectively 
handle the variety of data inflow, all data-formats are first converted into BUFR format, 
following the WMO BUFR templates, by using the ECMWF’s Scalable Acquisition and Pre-
Processing (SAPP) system. The IFS superobservation method takes 6-hourly BUFR files as 
input instead of the original TROPOMI data-files. It is therefore limited to using the parameters 
that are available in the BUFR format. 

The advantage of using the IFS superobservation method is that the procedure can be easily 
applied to a wide range of retrieval products from various instruments and for various species. 
The ECMWF superobservation software gives the additional flexibility to change the resolution 
of the created superobservations by changing a parameter on script level, without having to 
reprocess the input data. Figure 1 shows some of the settings selected for the ECMWF 
TROPOMI NO₂ super observations. The SAPP processing also automatically removes any 
duplicate measurements that are present in the TROPOMI data-files. 

 

Figure 1: Example of the settings that can be specified on a script level for TROPOMI NO₂ 
data. The surface types are: 0 = land, 3 = permanent ice, 5 = ocean, 6 = coast, 7 = inland 
water, 9 = ocean ice, 11 = land snow. 

 

In the CAMS system, the TROPOMI NO₂ data is currently averaged to a model resolution of 

T511 (~40 km x 40 km)1. In the current superobservation method, the observational data, the 

observational errors and the averaging kernels are all averaged in the same way. There are 

no weights applied in the averaging. The data is averaged separately for different surface 

types (e.g. land, ocean, ice, etc.) and two different levels of cloudiness (clear sky, cloudy). 

This ensures that the averaging kernel shapes are similar for the individual observations 

 
1 For more information about the T511 grid using the spectral truncation see  

https://confluence.ecmwf.int/display/CKB/ERA5%3A+What+is+the+spatial+reference. This 

grid corresponds to a reduced gaussian grid of N256 (see 

https://confluence.ecmwf.int/display/EMOS/N256). 

https://confluence.ecmwf.int/display/CKB/ERA5%3A+What+is+the+spatial+reference.
https://confluence.ecmwf.int/display/EMOS/N256
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contributing to the superobservation. Superobservations are only generated if there are more 

than six observations in a grid box.  

Negative retrieval values of the vertical column density can occur when tropospheric NO₂ 

columns are small compared to the stratospheric background and the retrieval uncertainty. 

This happens regularly over unpolluted regions like the Pacific Ocean. The chemistry scheme 

of the IFS-COMPO model cannot deal with negative concentrations. Therefore, negative 

measurements are not included in the operational BUFR files and will therefore not be used 

in the current CAMS NO₂ superobservation method. This removal of negative values can 

produce a positive offset, especially over remote regions. The novel superobservation method 

being tested in CAMEO does however make use of both positive and negative NO₂ values. 

Any resulting negative superobservations are discarded in the screening run of the model. In 

the future, we will test the use of BUFR files with descriptors that can include negative values.  

An example of the current superobservations of TROPOMI NO₂ measurements can be found 

in figure 2. 

 

 

Figure 2a. (Left) The TROPOMI NO₂ measurement data at 2022/12/02 for East Asia. (Right) 
The corresponding NO₂ superobservations produced by the current operational method. The 
white areas with no superobservations indicate cloudy scenes, removed by filtering the original 
TROPOMI NO₂ data for qa-values > 0.75. The superobservations are plotted for the reduced 
gaussian grid N256.  

 

Figure 2b. (Left) The TROPOMI NO₂ measurement data at 2022/12/02 over the Beijing 
region. (Right) The corresponding NO₂ superobservations produced by the current 
operational method. The superobservations are plotted for the reduced gaussian grid N256. 
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3.2 Proposed superobservation method. 

3.2.1 Introduction 

In this section we discuss the newly proposed superobservation method that has been 

developed by Pieter Rijsdijk (SRON) and Henk Eskes (KNMI). An example of the resulting 

superobservations can be found in figure 3. This new methodology is discussed in detail in 

their research paper (Rijsdijk et al., 2024). This section gives a brief overview of the theoretical 

background summarising findings of Rijsdijk et al. (2024). The focus lies on explaining how 

their methodology differs from the current superobservation algorithm at ECWMF. The second 

part of the section discusses the implementation and configuration of the superobservation 

method into the CAMS assimilation system. 

 

The theoretical background is broken up in two parts. The first part focuses on the general 

method of aggregating the observational data into the superobservation. The second part 

focuses specifically on aggregating observational uncertainties. 

 

In the final section, 3.2.6, all the theoretical differences between the two superobservation 

methodologies is summarized. 

https://egusphere.copernicus.org/preprints/2024/egusphere-2024-632/
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Figure 3. An example of a superobservation using the new method. Pictured is an orbit of 
TROPOMI on 2018-09-08 with NO₂ observations over Europe (top) and the corresponding 
superobservations (bottom) for a model grid of 0.5x0.5°. Only observations with a quality 
assurance-value > 0.75 are included. (Rijsdijk, et al., 2024)  

 

3.2.2 General method 

The tracer concentrations and the averaging kernel are aggregated using area-weighted 

averaging – or tiling approach. An average is taken using the overlap of the individual 

observation with the model grid cell as a weight. See figure 4 for a schematic view. 

𝑦𝑆 =  ∑ 𝑤𝑖 𝑦𝑖 , 𝑨𝑆 = ∑ 𝑤𝑖 𝑨𝑖 

Where yS, AS are the superobserved concentration and averaging kernel; wi are the 

normalised weights and yi, Ai are the individual observations and averaging kernels. 
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Figure 4. A schematic view showing an observational grid (smaller tilted tiling) and a model 
grid cell (blue tile). The weight used in averaging the observational grid cells to the model grid 
resolution is the area-overlap between an individual observational cell with the blue model grid 
cell. An observation that is fully contained within the model grid cell has therefore a maximum 
weight equal to the footprint area, an observation that is only half contained within the model 
grid cell has half that weight. Larger footprints at the edge of the swath have a larger weight 
than smaller footprint close to nadir (Rijsdijk, et al., 2024) 

 

Using the area-weighted average has the conceptual advantage that the total (area-
integrated) mass of the trace gas is conserved in the superobservation. The total mass of all 
superobservations is the sum of the mass in all individual observations.  

 

3.2.3 Error uncertainties 

The described superobservation method differs mainly from its alternatives in how it 

aggregates the uncertainties of the observational errors. A particular effort is made to quantify 

the error correlations between observations within one superobservation. Most other 

superobservation methods either assume all observations within a superobservation are fully 

correlated or not correlated at all.  

The lower the correlation between individual observations within the superobservation, the 

lower the total uncertainty. This can be intuitively understood as highly correlated 

measurements containing less unique information – you have fewer independent 

measurements to constrain the uncertainty of the average. Assuming a constant correlation 

coefficient c within one superobservation, the aggregated uncertainty becomes: 

 

σobs
2 = (1 − 𝑐) ∑ 𝑤̃𝑖

2

𝑁

𝑖=1

σ𝑖
2 + 𝑐 (∑ 𝑤̃𝑖

𝑁

𝑖=1

σ𝑖)

2
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The total uncertainty is assumed to be the sum of the observational uncertainties and the 

representation bias (also known as the sampling error). The observational uncertainties come 

from the following sources. 

• Stratospheric uncertainty 

• Slant column uncertainty 

• Air mass factor uncertainty 

The three observational uncertainty components are combined following the error propagation 

approach developed by Boersma et al. (2004). 

Each of the four error contribution has a different degree of correlation which is estimated 

separately in the proposed new superobservation methodology. All contributions will be 

discussed in some detail in the following sections. For a more depth discussion, see Rijsdijk 

et al. (2024). 

 

3.2.3.1 Representativity error uncertainty 

Some data within the superobservation can be missing, in particular due to cloud coverage 

since cloudy observations are filtered out using only qa-values larger than 0.75. We are 

therefore estimating the ‘true’ averages of the total superobservation using only part of the 

data. The difference between the sample average and the unknown average of the full 

population is called the representativity error or, in statistics, the sampling error. A different 

sample of the population has a different sampling error. This variance in the sampling error 

contributes to the superobservation error uncertainty. We call this contribution the 

representativity error uncertainty. 

A concrete example where this uncertainty comes from is a superobservation grid cell 

containing both an urban and a rural area. If during the measurement a cloud happens to pass 

over the urban area, we will get a significantly different (lower) measured NO₂ concentration 

than if the cloud would have passed over the rural area. 

In TROPOMI data, the missing points are not randomly distributed throughout the 

superobservation. If a pixel is missing due to cloud coverage for example, changes are that 

neighbouring pixels are also blocked by the same cloud field. The representativity error due 

to this systematic sampling is determined experimentally using TROPOMI data (Rijsdijk et al., 

2024). The found representativity error uncertainty varies locally. To make the algorithm grid-

independent all local variation is simplified into two categories, polluted and unpolluted areas. 

This simplification, together with information on how the representativity error uncertainty 

scales with the size of the superobservation, gives us an estimate of the representativity error 

uncertainty for each superobservation. 

 

3.2.3.2 Stratospheric uncertainty 

For the NO₂ TROPOMI-product, we are interested in the tropospheric column, but the satellite 

measures the total column. The tropospheric column is calculated by subtracting the estimated 

stratospheric column from the measured total column. The stratospheric column is estimated 

using TM5-MP model simulations with assimilated NO₂ TROPOMI observations. The 

uncertainty of the estimation contributes to the total error. The TROPOMI retrieval algorithm 

approximates this uncertainty as a globally constant value. Because of the highly correlated 
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nature of the stratospheric error, this term becomes relatively larger for the superobservation 

error, while the contribution is much smaller for individual TROPOMI retrievals. 

Rijsdijk et al. (2024) improves upon stratospheric uncertainty approximation by estimating the 

seasonal and latitudinal variation using a data analysis of experimental TROPOMI results as 

shown in figure 5 (see Rijsdijk et al. (2024) for more details). The new uncertainty is generally 

lower than the constant uncertainty from the retrieval product, especially around the equator. 

Depending on the season, the uncertainty can however be higher around higher latitudes – 

including Europe. A closer look at these conditions including experimental results can be found 

in section 4.2.3. 

 

Figure 5. The latitudinal and seasonal variation of the stratospheric column root mean square 
error derived from the observation-minus-forecast departures statistics from the assimilation 
step which is part of the retrieval. This is used as the stratospheric uncertainty instead of the 
constant value of 3.3 μmol/m2 in the TROPOMI retrieval error. (Rijsdijk, et al., 2024)  

 

3.2.3.3 Slant column uncertainty 

The satellite instrument measures slant columns with some uncertainty. This slant column 

uncertainty has both a random and a systematic part. The random part is estimated by Geffen 

et al. (2020). While the systematic part of the uncertainty has various sources discussed in 

Richter et al. (2011). In our superobservation algorithm, this systematic part is taken into 

account only indirectly because it contributes to the observation-minus-forecasts-statistics as 

shown in figure 5. The reason is two-fold. Firstly, the systematic part is largest in 

circumstances where the NO₂ concentration is low – the effect on the retrieval is therefore 

limited. Secondly, the systematic part of the slant column uncertainty is already partially 

included in the stratospheric uncertainty. See Rijsdijk et al. (2024) for a more detailed 

discussion  

 

3.2.3.4 Air mass factor uncertainty 

At various points in the post-processing of TROPOMI-data the air mass factors (AMF) are 

used. For example, in converting slant columns to vertical density columns or in estimating 

the tropospheric part of the vertical density column. The calculation of the air mass factors 

themselves results in an additional uncertainty. For individual measurements, this uncertainty 

is part of the TROPOMI level 2 retrieval product. 
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This superobservation algorithm improves the uncertainty by estimating the spatial correlation 

from individual air mass uncertainties within one superobservation. A large part of the AMF 

uncertainty component depends on a climatological surface albedo dataset, which affects the 

AMF directly, but also affects the effective cloud fraction and cloud pressure indirectly. The 

spatial correlations of the full AMF uncertainties are approximated by comparing two retrieval 

datasets coming from two different and valid surface albedo datasets. Then, the retrieval 

difference allows estimating the  correlation length which is used to find the average correlation 

within each superobservation grid cell. See Rijsdijk et al. (2024) for the details. 

 

3.2.3.5 Total superobservation uncertainty 

Since the different error components are assumed to be independent, the total variance is the 

sum of the variances of the uncertainty components discussed in the previous paragraphs. 

The relative importance of these components is shown in figure 6. 

 

Figure 6. Contribution of the four error uncertainty components to the total error uncertainty. 
The components are: stratosphere (in blue), slant column (in orange), air mass factor (in 
green) and representativity (in red). The distribution of TROPOMI-measurements is shown in 
black. 

 

The uncertainty is dominated by the stratospheric component in areas of low NO₂ while , the 

major uncertainty component is the air mass factor in areas of high NO₂ concentration. 

Stratospheric uncertainty stays however a significant contributor to the superobservation 

uncertainty. Although the representativity error plays a minor role on average, it can be 

significant locally. Particularly around the edges of clouds. The contribution of the slant column 

random uncertainty is in on average very minor since it is reduced by a factor 1/sqrt(n), where 

n is the number of observations in a superobservation. For individual observations, the slant 

column uncertainty can however be the dominant uncertainty, especially over unpolluted 

areas (Rijsdijk et al., 2024). 
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3.2.4 Technical implementation into software 

The proposed superobservation methodology is implemented as a python package. The 

software is open-source and has been made publicly available 

(https://doi.org/10.5281/zenodo.10726644). A technical documentation is included in the 

software which also explains how-to-install. The software comes configured to TROPOMI 

NRTI NO₂-observations and the global T511 CAMS grid. However, using a separate 

configure-file the software can be used with different observational datasets, grid types and 

grid resolutions. 

• The following grid types are currently supported; regular lon/lat global and regional 

grids, Gaussian global grids (full and reduced). 

• Other sensors and data products measuring NO₂ are supported, in particular the 

QA4ECV GOME-2, SCIAMACHY and OMI products; 

• Apart from the global CAMS assimilation system discussed in this report, the 

software was also tested on the Japanese JAMSTEC system (Rijsdijk et al., 2024; 

Sekiya et al., 2022). 

• The method has also been extended to the other trace gasses HCHO and SO2. 

The software package can be run by either executing a python script or using the command 

line interface. The typical runtime of the software is between 12 and 18 seconds for one orbit 

on ECMWF’s supercomputer ATOS. 

The software input is a collection of TROPOMI L2 NO₂ retrieval netCDF-files containing the 

observational data. The output files are again in the netCDF-format. Every single orbit netCDF 

-file processed by the superobservation software is stored separately and contains the gridded 

superobservations, superobservation uncertainty and superobservation averaging kernels, 

and optional diagnostic fields as specified in the settings file. 

 

3.2.5 Implementation in the CAMS global system 

As discussed in section 3.1, the CAMS global system uses pre-processed BUFR-files for the 

assimilation instead of directly using the original observational data-files. For the evaluation of 

the new methodology, the new superobservations are produced off-line (outside of the 

ECMWF) by the KNMI. The resulting netCDF superobservations are manually converted to 

BUFR-files and are archived at ECMWF.  

In the assimilation experiment, some IFS-scripts are updated to use the archived 

superobservations instead of running the default IFS superobservation algorithm used to 

process TROPOMI NRT data. The reason for using offline data for the initial tests is as follows. 

The TROPOMI datafiles from the NRT data stream contain overlapping rows of 

measurements. The number of overlapping rows varies between 15 and 16 for each granule, 

which complicates a simple removal when granules are processed out of sequence. These 

duplications in measurements are currently effectively removed in the pre-processing of the 

BUFR-files. It requires however special care and makes it difficult to implement the new 

superobservation algorithm in the CAMS NRT assimilation and to keep the existing pre-

processing workflow. The choice was therefore made to first produce the superobservations 

off-line. The operational implementation for application to NRT data is postponed to after a 

positive outcome of the evaluation. 

 

https://doi.org/10.5281/zenodo.10726644
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3.2.6 Summary of differences 

Table 1 is the  overview of the main differences between the currently used superobservation 

method in the global CAMS assimilation system and the proposed method discussed in this 

section. 

 

Current Method Proposed method 

Assumes fully correlated observation errors Approximates the correlation between 
observation errors. 

Currently only uses positive TROPOMI-NO₂ 
measurements 

Includes all the measurement data, including 
negative retrievals to construct the 
superobservations. Then use only positive 
superobservations. 

Works only with an observation count 
threshold. 

Explicitly handles representation error. 

Treats different land uses separately Does not distinguish between land uses. 

Works on pre-processed BUFR-files 

Easy to use in NRT and in an operational 
setting 

Works directly on netCDF observational 
data-files. 

Table 1. An overview of the main differences between the currently used superobservation 
method in CAMS (left) and the new, proposed method (right). 
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4 Evaluation 

The proposed superobservation method is tested in the global CAMS assimilation system and 
evaluated against the currently used superobservation method. The goal of the evaluation is 
to identify whether the new superobservation scheme for TROPOMI NO₂ observations leads 
to significant improvements in the analysis fields for NO₂ and reduces the overall analysis and 
forecast errors compared to independent observations. 

 

4.1 Experiment set-up. 

For the evaluation, two assimilation experiments were run for the month December 2022 as 
shown in table 2.. The first experiment is a reference experiment, expid igz4, using the current 
NO₂-superobservation method of the model cycle CY49R1 (see section Error! Reference 
source not found.). The second experiment, expid igux, has the exact same set-up as igz4 
apart from the superobservations. These are created using the new superobservation method 
(see section Error! Reference source not found.). Longer runs will follow (see chapter 5). 

 

 Reference experiment Research experiment 

Description Uses current ECMWF-
superobservations 

Uses new KNMI-superobservations 

Experiment-id igz4 igux 

TROPOMI-data NO₂ TROPOMI NRT data NO₂ TROPOMI RPRO data –  

 processor version 2.4.0 

 

Research period December 2022 December 2022 

Quality-assurance 
threshold 

0.75 0.75 

Coverage threshold Six measurements per 
superobservation cell 

30% of the superobservation cell 
area covered by measurements  

Table 2. An overview of the configuration details of the two assimilation experiments. 

 

4.2 Assimilation tests 

This section presents and discusses the results of the assimilation experiments, set up as 

described in Table 2.  

 

4.2.1 Comparing the TROPOMI superobservations 

In this subsection, we examine the NO₂ superobservations used in the assimilation 

experiments. The data is retrieved from the ODB-database.  

As the new superobservation method aims to improve the superobservation uncertainties 

rather than the superobservation values, it is not expected that the NO2 data used in the two 

experiments will significantly differ. However, the use of the area-weighted approach and the 

calculation of the grid box mean are seen as enhancements in the new method compared to 

the existing one. 
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Figure 7 shows the superobserved NO₂ vertical column density over Europe (upper plots) and 

South-East Asia (lower plots) for a single day, the 2nd of December 2022. As expected, the 

difference in NO₂ vertical column densities between the two methods is minimal. The main 

differences are seen around cloud boundaries where the different criteria on threshold 

coverage to create a superobservation (e.g. minimum of 6 observations in a grid-box versus 

30% minimum coverage) will lead to difference. 

 

 

Figure 7. The NO₂ vertical column densities in μmol/m² using the current superobservation 
method (left) and the proposed new method (right) over Europe (top) and South-East Asia 
(bottom) on the 2nd of December 2022. 

 

Figure 8 shows the vertical column density over Europe and East-Asia averaged over the full 

research period December 2022, where only minor differences can be identified.  
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Figure 8. The NO₂ vertical column densities in μmol/m² using the current superobservation 
method (left) and the proposed new method (right) over Europe (top) and South-East Asia 
(bottom) averaged over December 2022. 

 

Figure 9 shows scatterplots comparing the superobservations of both methods for all the data-

values over the month of December 2022. 

 

Figure 9. Scatterplots comparing the two superobserved NO₂ vertical column densities in 
µmol/m2 using the current superobservation method (y-axis) and the proposed, new method 
(x-axis) over Europe (left) and South-East Asia (right) for all superobservations during 
December 2022. 

 

As can be seen clearly in the scatterplots, the two superobservations method agree well. The 

average bias is 1.3 and 0.9 µmol/m2 and they have a Pearson correlation coefficient of 0.991 

and 0.995 for Europe and South-East Asia, respectively. The good agreement was expected 

as the main difference between the superobservation methods is the treatment of the 

superobservation uncertainties. The bias appears mainly associated with a difference 

between the current and new superobservation method for small column values, where the 

new method uses negative values: here the current method leads to larger average values 

than the new method. 
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4.2.2 Comparing the TROPOMI superobservation uncertainties 

In the following section, we compare the superobservation uncertainties of the two methods. 

Here, we expect to see a significant change. The current method is likely to overestimate the 

NO₂ errors mainly by assuming that measurements errors within one grid box are fully 

correlated (Rijsdijk et al., 2024).  

To isolate the impact of different estimates for the true correlation in the measurement errors 

on the superobservation uncertainties, we examine the fully correlated to the partially 

correlated superobservation errors, both produced offline using the KNMI-software. These 

uncertainties are derived from the same TROPOMI RPRO-data that was used to produce the 

novel superobservations for the assimilation experiments. The results are shown in figure 10. 

 

 

 

Figure 10. The NO₂ superobservation uncertainties [µmol/m2] for the 2nd of December 2022 
over Europe (top) and South-East Asia (bottom). The uncertainties calculated assuming fully 
correlated uncertainties, like the current ECMWF superobservation method, is depicted on the 
left. The uncertainties calculated using the proposed new superobservation method is 
depicted to the right. 

 

As shown in figure 10, estimating the true spatial correlation by assuming partially uncorrelated 

errors reduces the NO₂ superobservation uncertainties as expected, particularly over South-

East Asia. However, in the preliminary results over Europe we do not see significant 

differences. As this is specific to Europe during winter and will be discussed in more detail in 

the following section (4.2.3), conclusions can be drawn more reliably when data from spring 

and/or summer are also considered. 
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Next, we analyse the superobservation uncertainties used in the assimilation experiments. 

Since the two superobservation methods differ in more aspects than just the handling of the 

spatial correlations, see Table 1, we do not expect the experimental results to fully match 

figure 10. However, given that the correlation estimation is the primary distinction between the 

two methods, the experimental results should at least reflect the trends observed in figure 10. 

 

 

Figure 11. The NO₂ uncertainties in the vertical column densities [µmol/m2] using the current 
superobservation method (left) and the proposed new method (right) over Europe (top) and 
South-East Asia (bottom) on the 2nd of December 2022. 

 

Figure 11 shows the superobservation uncertainty of the assimilation experiments over 

Europe and South-East Asia on the 2nd of December 2022. The new superobservation method 

results in lower values for background conditions, and higher values in polluted areas as are 

found over Spain, Greece, and India. This aligns with our expectations from figure 10. In 

addition, the distribution of the new superobservation uncertainties have a higher degree of 

variability compared to the current ECMWF-method. Part of the additional variability are higher 

uncertainties around the cloud field boundaries due to the inclusion of the representation error. 
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Figure 12. The NO₂ uncertainties in the vertical column densities [µmol/m2] using the current 
superobservation method (left) and the proposed new method (right) over Europe (top) and 
South-East Asia (bottom) averaged over December 2022. 

 

Averaged over December 2022 the superobservation uncertainties from the new 

superobservation method are higher over Europe and North-East China than the current 

approach. The uncertainties are lower over the rest of South-East Asia. The impact of the new 

superobservation methods on uncertainties is more evident in the scatterplots shown in figure 

13. A global difference map is depicted in figure 14 below. 

 

 

Figure 13. Scatterplots comparing the uncertainties of the two superobserved NO₂ vertical 
column densities in [µmol/m2] using the current superobservation method (y-axis) and the 
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proposed new method (x-axis) over Europe (left) and South-East Asia (right) for all 
superobservations during December 2022. 

 

On average, the new superobservation method reduces the uncertainty over South-East Asia 

during the December 2022 by 1.6 µmol/m2. However, over Europe in December 2022, the 

new method increases the average uncertainty by 3.0 µmol/m2. While the frequency of low 

uncertainties increases with the new method (indicated by the increased density of occurrence 

for small values in the x-axis), also the frequency of high uncertainties actually increases, 

which eventually results in the average increase in the uncertainty in the new method.  

Both datasets have a poor correlation, suggesting that the new superobservation uncertainties 

are poorly related to the ECMWF superobservation uncertainties. This could be an effect of 

the representation error that the new superobservation method takes into account which can 

produce high uncertainties near cloud boundaries.  

 

4.2.3 Latitude-dependent performance 

As discussed in section 3.2.3.2 and illustrated in figure 5, although the estimated uncertainty 

correlation generally reduces the superobserved uncertainties, the new superobservation 

method can sometimes result in higher uncertainties, for example due to an improved estimate 

of the stratospheric uncertainty.  

In most cases, this is an improvement to the previously assumed constant stratospheric error 

of 3.32 μmol/m². However, for latitudes above ~40°N, during winter and in July, the new 

stratospheric uncertainty exceeds 3.32 μmol/m². This includes the mayor part of Europe.  

Since the stratospheric error is the dominant component to the total uncertainty for NO₂ 

vertical column densities lower than ~40 μmol/m² (see figure 6), this can result in higher or 

equal superobservation uncertainties using the new superobservation method compared to 

the current one for this region and period.  

This effect can be seen in Figures 11 and 12 where the new superobservation method does 

not lower the NO₂ uncertainties over Europe. However, it does show noticeable improvements 

over South-East Asia. 
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Figure 14. Global map of the difference in NO₂ superobservation uncertainty between the two 
methods on the 2nd of December 2022 (KNMI-method minus ECMWF-method) in μmol/m². 
In blue are areas where the new method produces lower uncertainties, in red where it 
produces higher uncertainties. 

 

Figure 14 shows the average global differences in NO₂ superobservation uncertainty between 

the two methods over December 2022, showing a clear latitude band up from 40°N where the 

new superobservation method produces higher uncertainties – including over Europe. This 

increase can be explained by the fact that, at 40-50°N in winter, the new method increases 

the stratospheric error, based on retrieval statistics, and with the small tropospheric air mass 

factor (AMF - due to low sun), this error becomes further inflated when converted into a 

tropospheric column error. In contrast, at 30-40°N, the stratospheric error used in the retrieval 

is not significantly different from the improved estimate shown in figure 5, leading to the 

expected reduction in uncertainty over regions like China. It should also be considered that 

the ECMWF-method only uses positive observations when creating the superobservations. 

This can lead to a positive bias which would be most pronounced in unpolluted areas where 

most negative NO2 retrievals can be found, e.g. clean area over the Pacific (see also section 

3.1). 

 

4.3 Comparing the assimilation output. 

In the previous section we analysed the input to the two assimilation experiments (see Table 

2). In this section we will discuss the preliminary results of the experiments and assess the 

performance of the new superobservation method. 
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4.3.1  First guess and analysis departures 

The analysis is the optimal estimate of the atmospheric state at the end of an assimilation 

cycle. It combines the observational data with the model background values.  

The first guess, also referred to as the background, is a forecast initialised from the previous 

analysis. This forecast acts as a starting point for the next assimilation cycle. The ‘first guess 

departure’ is the difference between the observations and this forecast. Similarly, the ‘analysis 

departure’ is the difference between the observations and the analysis.  

As demonstrated in section 4.2.2, the differences in aggregated NO2 vertical column densities 

between the two superobservation methods are relatively small in absolute terms (figure 14). 

However, assimilating similar observations with modified errors can still impact the analysis. 

Figure 15 presents some basic statistics for the two experiments, showing the background 

(left panels) and analysis (right panels) departures for the operational superobservation 

system (black) and the proposed system (red) for December 2022 for the Northern 

Hemisphere (upper panels), the Tropics (middle panels), and the Southern Hemisphere (lower 

panels). In all regions, the new method results in reduced RMS errors for the analysis 

departures and smaller positive first-guess and analysis departures, with the most significant 

improvements observed in the Tropics. This reduction in RMS error is accompanied by a 

reduction in the mean bias.  
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Figure 15. Statistics of first-guess departures (observation minus first-guess, left) and analysis 
departures (observation minus analysis, right) in 1015 molec/cm2 for December 2022, 
averaged over the Northern hemisphere (upper), the Tropics (middle) and the South 
Hemisphere (lower). Red (expid igux) shows the experiment with the new super-observation 
software (with statistics shown in brackets), black (expid igz4) the control experiment.  

 

Focusing specifically on the Tropics, figure 16 shows a monthly time series of background and 

analysis departures for the experiment using the new superobservations (blue and red lines, 

respectively) and the reference experiment (black and purple lines, respectively) for the tropics 

(left). This figure highlights the consistent reduction in both first guess and analysis departures 
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over the entire period when applying the new method. Whereas it is not the case for the whole 

north hemisphere (right), where the NO₂ column densities are higher than the tropics. 

This is likely to be the result of including negative observations when creating the novel 

superobservations and suggests that it could also be beneficial to include negative 

observations in the current ECMWF superobservation method. 

  

Figure 16. Timeseries of the background and analysis departures for the experiment igux 
(blue and red, respectively) and the reference igz4 (black and purple, respectively) for 
December 2022 in the Tropics and the Northern Hemisphere. 

 

This change in first guess and analysis departure statistics seen above leads only to minor 

changes in the monthly average the NO₂ analysis departure of tropospheric columns, as 

illustrated in figure 17.  

 

 

 
 

Figure 17. The differences of the monthly average analysis departures over Europe (left) and 
South-East Asia (right) of the reference experiment using the current ECMWF 
superobservation method (igz4) minus the new KNMI superobservation method (igux). 

 

Comparisons with independent surface air quality observations also show only small impact 

on average (figure 18). The minimal effect of assimilating NO₂ data is a known issue within 

the CAMS system. Due to the short chemical lifetime of NO₂ and the fact that the CAMS 

system currently only adjusts the initial conditions in the assimilation process, the impact of 

assimilation dissipates quickly (Inness et al., 2015).  

In case of surface O3 no noticeable impact is identified when comparing with independent data 

from China AQ, Airbase and Airnow data (not shown). 
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Figure 18. NO2 RMS error (left) and surface concentration bias (right) of the two assimilation 

experiments against European Airbase data (top) and China AQ data (bottom) for the current 

ECMWF superobservations (red) and the proposed KNMI superobservations (green). 
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5 Conclusion 

This document presents the implementation and a first evaluation of a novel NO₂ 

superobservation methodology within the CAMS global assimilation system. The new 

approach focuses on improving the NO₂ superobservation uncertainties by accounting for the 

spatial correlation between measurement errors, along with a more accurate representation 

of other uncertainties. This methodology was tested in an assimilation experiment carried out 

for the month December 2022 and compared against a reference experiment using the current 

NO₂ superobservation system. 

The primary goals of this evaluation were to ensure a successful implementation of the new 

superobservations, to quantify the differences in superobservation uncertainties between the 

two methods, and to evaluate the overall impact on assimilated trace gases. 

In this first, short evaluation the new method generally results in higher superobservation 

uncertainties compared to the current approach over regions with high pollution, such as 

Europe and China. For background conditions, as found primarily in the tropics and southern 

hemisphere, the uncertainties are lower.   This is attributed to improved estimation of the 

stratospheric error component, which, while beneficial overall, leads to higher total 

uncertainties at latitudes above 40°N during winter and July. We expect that extending the 

research period up to May 2023 will show better results over Europe in the later months as 

the stratospheric error decreases in spring. 

In terms of assimilation performance, the preliminary results indicate that both super-

observation methods perform similarly when evaluated against surface air quality 

observations in Europe and China. Still, the new method offers a significant improvement by 

reducing the positive bias present in the superobservations generated by the current 

approach, likely due to including positive and negative observations when calculating the 

averages. The next step is to determine whether more pronounced differences will emerge 

when the assimilation results are analysed over the full research period from December 2022 

to May 2023.  

It is known that the CAMS assimilation system is relatively insensitive to the assimilation of 

short-lived trace gases such as NO2. Therefore, the experiments to assess the impact of the 

superobservation method will be repeated once the emission optimization method also 

becomes available. Also, it is planned to extend the new superobservation method to HCHO 

and SO2. 
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