CAMS Service Evolution

D1.5 Report on 1-year 3MI proxy data: delivery of the conventional retrievals and retrievals adapted for the aerosol representation CAMS

Due date of deliverable	30/06/2024
Submission date	12/08/2024
File Name	CAMEO-D1.5-V1.1
Work Package /Task	Global aerosol assimilation in CAMS/ T1.2 Adaptation of aerosol parameter retrievals from 3MI, MAP/CO2M, S-3, -4,-5P and other instruments for the aerosol representation in CAMS (global)
Organisation Responsible of Deliverable	LOA, GRASP-SAS
Author name(s)	Oleg Dubovik, Pavel Litvinov, Milagros Herrera, Christian Matar, Marcos Herreras
Revision number	V1.1
Status	Issued
Dissemination Level	Public

The CAMEO project (grant agreement No 101082125) is funded by the European Union.

Views and opinions expressed are however those of the author(s) only and do not necessarily reflect those of the European Union or the Commission. Neither the European Union nor the granting authority can be held responsible for them.

Funded by the European Union

Table of Contents

1		Sco	pe c	of the deliverable	.3
	1.	.1	Obj	ective of the deliverable and work performed	.4
	1	.2	Aer	osol optical properties provided from 3MI Proxy retrievals	.5
		1.2. ang	.1 jular	Advanced optical properties of aerosol products generated from multi- polarimetric observations	.5
		1.2. on a	.2 aero	Aerosol composition information provided by 3MI Proxy retrievals base sol assumption harmonized with CTMs	d I 1
		1.2. ang	.3 jular	The advances in retrieval of aerosol composition information from multi polarimetric observation (3MI proxy retrieval)	- 14
2		Dat	a se	ts and formats	15
	2	.1	The	e description of archive organizations	16
	2	.2	The	post-processing and data aggregation	18
3		Sur	nma	ry	21
4		Ref	eren	ices	22
5		AN	NEX		25
	5. G	.1 RAS	ANI SP/N	NEX-1: The list of the parameters provided in POLDER-3 Iodels archive	25
	5. G	.2 RAS	ANI SP/C	NEX-2: The list of the parameters provided in POLDER-3	28

1 Scope of the deliverable

This document provides the three data sets of aerosol products derived from POLDER-3/PARASOL observations that considered as proxy 3MI observations. The first data set represents conventional aerosol products that includes all retrieved parameters containing extended set of the detailed optical properties of aerosol and surface properties. For example, the aerosol product includes spectral aerosol optical depth (AOD), fine mode AOD (AODF) and coarse mode AOD (AODC), spectral aerosol absorption optical depth (AAOD), single scattering albedo (SSA), as well as, Ångström exponent (AE). It should be noted that these data provide significantly more complete description of aerosol properties compare to popular MODIS product that include mainly data of total AOD, while other parameters such as AE are not reliable, especially over land, compared to AE provided by POLDER-3/GRASP (Chen et al., 2020).

The second data set is provided as an illustration of new approach of aerosol remote sensing retrieval that is more adapted for the aerosol representation aerosol climate models, especially in CAMS. The concept of approach and details of main activities, in the frame of CAMEO project, aimed on further harmonization of aerosol remote sensing retrieval with CAMS are presented and described in details in D1.4 "Report on aligning aerosol parameter retrievals" (Litvinov et al., 2024). The approach relies on new "GRASP/Components" concept (Li et al., 2019, 2020a,b). In the frame of this concept the complex refractive index of aerosol is not derived directly as in AERONET retrieval (Dubovik and King, 2000, Dubovik et al., 2000, 2006) or POLDER-3/GRASP-HP approach (Chen et al., 2020), instead the aerosol is represented as a mixture of different aerosol components with predefined spectral complex refractive index, and therefore the retrieved fractions drive the aerosol spectral index of refraction of total aerosol. In addition, fraction of spherical particles and the aerosol layer height (ALH) are also included in state vector of retrieval aerosol parameters. The aerosol vertical distribution was modeled using an exponential profile and scale height was retrieved.

After number of tests, a new "GRASP/Components" approach (Li et al., 2019, 2020a,b) has been adapted for implementation for 3MI operation and it was extensively applied to 3MI proxy POLDER-3 data. The entire archive of POLDER-3 data was processed using GRASP/Components and extensively validated (Zhang et al., 2021). The results are available at <u>https://www.grasp-open.com/products/</u>. In this deliverable we provide later processing of POLDER-3 data with improved definition of aerosol components that allow further improvements in the retrieval of aerosol optical properties such as AOD, AE, SSA, etc.

Finally, we added data set of the POLDER-3 processing generated using GRASP/Components with the latest version of aerosol model representation. In difference with previous version, this processing retrieves two externally mixed aerosol modes: fine mode, coarse desert dust, and coarse sea salt. In This approach, in a contrast with previous retrieve different size distributions for desert dust and sea salt aerosol coarse modes of aerosol. As shown in D1.4 (Litvinov et al., 2024) this configuration of aerosol retrieval allows some improvements in retrieved aerosol properties. At the same time, this GRASP aerosol retrieval configuration is closer to aerosol representation in CAMS. It should be noted however, that since this configuration is planned to improved further in CAMEO studies, the processing was done globally but only over AERONET sites.

1.1 Objective of the deliverable and work performed

Several extensive data sets of the retrieval products from 3mMI/Proxy POLDER-3 data were prepared in user friendly format and made available for CAMEO and general broad scientific community. The objective of these efforts it to provide an example of advanced aerosol retrieval product that could be used by the community for investigating and the qualitative and quantitative differences in aerosol products to be available from new multi-angular polarimetric (MAP) missions, such as 3MI/EPS-SG, MAP/CO2M, HARP-2 and SPEX/PACE, etc. Moreover, these data set and this report are prepared in specific manner that has several rather strategic complementary objectives to:

- *to demonstrate* the value of new detailed MAP products providing extensive set of detailed aerosol optical properties: AE, spectral AODF, AODC, SSA, AAOD, etc.;
- to demonstrate the potential of MAP satellite product to provide information about not only amount of aerosol but also on variability of its composition;
- to demonstrate a possibility of close aligning assumptions in aerosol remote sensing approaches using processing MAP observation and chemical transport models (CTM);
- to demonstrate the idea of above aligning aerosol modelling in remote sensing with CTM and to outline very promising strategic direction of aerosol remote sensing evolution that bring double complementary benefits of:
 - improving efficiency of satellite aerosol product assimilation into CTM;
 - improving **scope and accuracy of aerosol optical properties** retrieved from remote sensing.

Specifically, the first POLDER/Models data set provides the extended set of aerosol MAP products that provide base satellite product AOD (that was already available, e.g. from MODIS) of similar of higher accuracy than from conventional MODIS product together with advanced aerosol products : AE, AODF, AODC, SSA, AAOD that generally are not available from other conventional (not MAP) satellite. The second GRASP/components data set provides similar set of aerosol optical parameters, while they were derived using conceptually different POLDER/components retrieval approach. It derives the size resolved fractions of aerosol components representing different aerosol composition species, such as black carbon, brown carbon, fine/coarse mode non-absorbing soluble and insoluble, coarse mode absorbing and aerosol water. The retrieved fractions drive the aerosol spectral index of refraction in modelling of atmospheric radiances. As a result, this data set includes not only parameters characterizing distribution of the aerosol optical parameters and also parameters suggesting aerosol composition such as volume factions of carbon, brown carbon, etc. This shows that aerosol representation of aerosol microphysics and composition in POLDER/components approach is close to that in CTMs. At the same time, as will be discussed below, the analysis shows that POLDER/components approach provides the entire set of aerosol optical properties (AOD, AE, AODF, AODC, SSA, AAOD) that is overall more consistent and even more accurate than provided by POLDER/Models approach designed as direct retrieval optical aerosol parameters.

Finally, the last data set provides examples of aerosol retrieval obtained using POLDER/components approach modified in frame of CAMEO project. These modifications were suggested in the frame of this CAMEO project (see detailed discussion in D1.4, Litvinov et al., 2024) with the aim of achieving further harmonization of aerosol description in remote sensing and CTM. It was shown the suggested modifications not allowed two positive outcomes: (i) to make model of aerosol used in remote sensing closer to that of CTM and (ii) to provide all aerosol optical properties with the same and even higher accuracy than earlier

version of POLDER/components approach. The later conclusion suggests high potential of further efforts in aligning and harmonization of aerosol modelling in remote sensing and CTMs.

1.2 Aerosol optical properties provided from 3MI Proxy retrievals

The MAP observations are considered as the most promising type of passive satellite observation and several new polarimetric missions are deployed or planned to be deployed in the near future (Dubovik et al., 2019). The extensive efforts by Dubovik et al. (2011, 2014, 2021), Li et al., (2019, 2020a,b), Chen et al.(2020), Hasekamp et al. (2024) demonstrated the full real potential of MAP retrieval to provide rather complete and accurate set of aerosol optical parameters together with some inside of aerosol composition. The delivered data set can be used by CAMEO team and general community to test the products and use for different comparisons and applications. The additional useful information about each data set is provided in the this section.

1.2.1 Advanced optical properties of aerosol products generated from multiangular polarimetric observations

The first POLDER/Modes data set can be used to demonstrate the aerosol product that provide base AOD aerosol product of similar or higher accuracy compared to conventional MODIS product together with advanced (AE, AODF, AODC, SSA, AAOD) that practically not available from conventional observations as those from MODIS. At the same time, it should be noticed that this is not the first version of aerosol product derived from POLDER observations.

Initially, the full POLDER-3 data archive was processed by GRASP using the three following retrieval configurations: POLDER-3/GRASP «optimized», «high-precision», «models» and «components» approaches. The «optimized» and «high-precision» are designed as AERONET-like retrieval (Dubovik and King, 2000, Dubovik et al., 2006) where the retrieved state vector includes size distribution together with values spectral index of refraction and faction of spherical particles. In addition, the aerosol scale height was retrieved too (Dubovik et al., 2011). The «optimized» and «high-precision» differ between themselves only by the precision of the RT calculations. The «models» approach uses the assumption of an external mixture of several aerosol components and directly retrieved parameters including aerosol concentrations and a scale height (Chen et al., 2020, Dubovik et al., 2021). The retrieval data products of all approaches contain the aerosol main aerosol characteristics including spectral AOD, AAOD, SSA as well as AE, spectral AODF and AODC. All these products were extensively evaluated using validations against AERONET and comparisons with the original POLDER algorithm (PARASOL/Operational), and MODIS Collection 6 aerosol products (Chen et al., 2020). The detailed validation was performed for Level 3 to 0.1 degree products. The studies have shown that the POLDER-3/GRASP retrievals provided reliable aerosol products. Specifically, POLDER-3/GRASP spectral products including AOD for six wavelengths in the range 443 to 1020 nm agree well with the AERONET AOD measurements, e.g. for POLDER-3/Models AOD correlation coefficients R are \geq 0.86 over land and \geq 0.94 over ocean with BIAS not exceeding 0.01 over land and 0.02 over ocean for all wavelengths. The upper panel of Fig. (1) demonstrates the correlations of satellite AOD with AERONET for several selected wavelengths.

Figure 1: The illustrations of the POLDER/GRASP product comparisons with AERONET data: the correlations of POLDER-3/Models AOD with AERONET for several selected wavelengths (440, 550, 870 nm) for entire POLDER archive.

The comparisons with MODIS aerosol products showed that the POLDER-3/GRASP AOD retrievals are very coherent with popular MODIS data and POLDER/Operational while also exhibiting some advancements. For example, Fig. (2) shows that over ocean the POLDER/Models AOD retrievals are fully coherent with MODIS globally over ocean. Moreover, the validations against AERONET both over ocean and land, shown on Figs. (1-2) suggest that POLDER/Models have somewhat superior accuracy over MODIS and POLDER/Operational AOD products.

Figure 2: From left to right: The illustrations of the POLDER/Models, POLODER/Operational and MOIDIS/DT products comparisons with AERONET data over ocean for year 2008, and global pixel to pixel comparison of MOIDIS/DT and POLDER/Models AOD over ocean for year 2008.

Figure 3: From left to right: the illustrations of the POLDER/Models MOIDIS/DT, MOIDIS/DB and MOIDIS/MAIAC products comparisons with AERONET data over land for year 2008.

The comparisons with MODIS manifested clear advantages of POLDER product in providing more reliable detailed aerosol parameters such as AE, AODF and AODC especially over land and such parameters as SSA and AAOD that are generally not available from MODIS-like instruments, while the validation of POLDER-3/GRASP products by Chen et al., (2020) showed a robust correlation of the retrieved SSA and AAOD spectral values with AERONET (440–1020 nm), correlations increase for the retrievals corresponding to the events with higher AOD. For AAOD retrievals overall the bias did not exceed 0.01, suggesting that POLDER-3/GRASP products can be used for making global estimations of AAOD at such a level of uncertainty. Figure 4 demonstrates the correlations of the detailed POLDER-3/GRASP products.

Figure 4: The illustrations of the POLDER/GRASP product comparisons with AERONET data: the correlations of the detailed aerosol parameters retrieved by POLDER-3/GRASP/HP product, from left to right: AE, AODF(550), AODC(550), SSA(865).

Thus, the analysis showed that in terms of AOD that characterize total amount aerosol MAP retrieval show comparable or even somewhat better capabilities compared to conventional MODIS retrieval, while MAP products seem to be significantly more capable in characterizing detailed properties of aerosol related with difference in type of aerosol particles. This advantage is illustrated by illustrations provided by Fig. (5). One can see that monthly maps of AOD obtained from MODIS and POLDER are rather coherent and do not manifest evident difference. In contrast, the monthly maps of AE from MODIS and POLDER are significantly different, where AE from MODIS show some unrealistic patterns. For example, smoke originated from well-known biomass burning outbreak in central Africa is characterized by very different AE over land (rather high) and ocean (quite low). This anomaly results in shown

evidently false significant values of AODC in transported smoke (lower panel in Fig.(5). POLDER/GRASP retrieval of AOD, AE and AODC seem to be rather consistent over land and ocean.

Figure 5: The monthly averaged AOD (top), AE (middle) and AODC (bottom) for September 2008 provided from MODIS/DT (left) and POLDER/GRASP products (right).

One of very important findings of Chen et al., (2020) analysis is that the best retrieval of total AOD was provided by the simplest approach (GRASP/Models). This is reason why GRASP/Models provided as first data set in the present deliverable. The more complex approaches GRASP/HP and GRASP/Optimized over land had notable bias (~0.06 - 0.07 at 500) as can be seen from Table 1.

In GRASP/Models the retrieval is restrained to a superposition of predefined aerosol components, significantly reducing the number of free parameters for retrieval. The more complex GRASP/HP retrieval with more retrieval parameters seemed to provide more accurate detailed aerosol parameters such as AE, AODF, AODF and SSA. Indeed, multiangular polarimetric observations have sensitivity to different aerosol properties, and therefore the MAP algorithms tend to be designed for the retrieval of large number of parameters, while in the situations with low aerosol presence the information from observations may not be sufficient to retrieve all parameters reliably. Evidently, Chen et al., (2020) analysis concluded that future efforts on improving the POLDER-3/GRASP retrieval showed be aimed at achieving accurate retrievals within one approach, however the situation also reveals the challenge of developing a unique approach that can provide a retrieval of all parameters with highest accuracy from MAP observations. In these regards the later approach - GRASP/Components provided apparently the most coherent total and detailed aerosol properties. The validation against AERONET of the first product generated POLDER/Components properties by Zhang et al., (2021) showed that this approach apparently provides the most coherent total and detailed aerosol properties. Specifically, the accuracy of total AOD from GRASP/Components

is higher than AOD form GRASP/HP and GRASP/Optimized and close to GRASP/Models, while most of detailed aerosol product (AODF, AODC, AE,) higher or close to the best results of GRASP/HP and GRASP/Optimized. This issue was additionally thoroughly investigated in the frame of ESA HARPOL project (https://eo4society.esa.int/projects/harpol/) where the two algorithms GRASP and RemoTAP (Hasekamp et al., 2011; Fu and Hasekamp, 2018) were thoroughly compared using benchmark theoretical computations and applications to real POLDER-3 data (Hasekamp et al., 2024). The strengths and weaknesses were identified and the effort to find the best approaches and to improve the algorithms were undertaken. The similar issue was identified in an earlier version of RemoTAP algorithm in which a large number of unknowns was also retrieved. Finally, it was shown in Hasekamp et al. (2024) that rather accurate retrieval with no essential biases of AOD and detailed characteristics such as AE, AODF, AODC, etc. could obtained using all approaches including «optimized» and «high-precision» by moderate decreasing the number of retrieved parameters. Nonetheless, POLDER/Components approach was recognized as overall most practically efficient approach allowing accurate retrieval of both AOD and detailed aerosol properties.

Land/ocean	Band	Products	R	Slope	Offset	RMSE	GCOS	Bias	Bias	Bias	Bias
	(nm)						(%)		$\tau < 0.2$	$0.2 \le \tau \le 0.7$	$\tau > 0.7$
Land	443	Optimized (41268)	0.900	0.867	0.104	0.179	26.7	0.06	0.09	0.06	-0.06
		HP (42202)	0.915	0.981	0.072	0.181	32.7	0.07	0.07	0.07	0.05
		Models (28449)	0.932	1.013	0.003	0.140	49.3	0.01	0.01	0.00	0.02
	490	Optimized (41268)	0.892	0.879	0.099	0.171	26.8	0.06	0.08	0.06	-0.04
		HP (42202)	0.909	1.000	0.069	0.174	33.2	0.07	0.07	0.07	0.07
		Models (28449)	0.929	1.025	0.003	0.131	51.6	0.01	0.01	0.01	0.03
	550	Optimized (41268)	0.876	0.847	0.101	0.162	27.5	0.06	0.08	0.05	-0.08
		HP (42202)	0.898	0.973	0.074	0.163	34.0	0.07	0.07	0.07	0.04
		Models (28449)	0.922	1.023	0.005	0.123	54.2	0.01	0.01	0.01	0.03
	565	Optimized (41268)	0.877	0.877	0.096	0.161	27.3	0.06	0.08	0.06	-0.05
		HP (42202)	0.898	1.004	0.069	0.165	34.0	0.07	0.07	0.07	0.07
		Models (28449)	0.920	1.011	0.006	0.120	54.4	0.01	0.01	0.00	0.02
	670	Optimized (41268)	0.858	0.823	0.099	0.152	28.4	0.06	0.08	0.05	-0.10
		HP (42202)	0.886	0.955	0.077	0.153	35.0	0.07	0.07	0.07	0.02
		Models (28449)	0.911	0.954	0.016	0.108	58.6	0.01	0.01	-0.01	-0.03
	865	Optimized (41268)	0.816	0.785	0.093	0.142	31.3	0.05	0.07	0.03	-0.15
		HP (42202)	0.856	0.932	0.074	0.142	37.6	0.06	0.06	0.07	-0.02
		Models (284449)	0.880	0.935	0.018	0.105	60.3	0.01	0.02	-0.01	-0.04
	1020	Optimized (40148)	0.791	0.772	0.089	0.139	32.8	0.05	0.07	0.02	-0.17
		HP (41016)	0.837	0.924	0.073	0.138	38.8	0.06	0.06	0.06	-0.03
		Models (27551)	0.856	0.943	0.023	0.109	59.5	0.01	0.02	0.00	-0.04
Ocean	443	Optimized (1495)	0.938	1.028	0.049	0.084	40.5	0.05	0.05	0.07	0.03
		HP (1551)	0.939	1.043	0.046	0.083	41.2	0.05	0.05	0.06	0.05
		Models (2064)	0.940	0.970	0.026	0.066	60.6	0.02	0.02	0.03	-0.06
	490	Optimized (1495)	0.939	1.064	0.041	0.079	43.2	0.05	0.04	0.07	0.05
		HP (1551)	0.942	1.077	0.039	0.079	43.1	0.05	0.05	0.07	0.09
		Models (2064)	0.946	0.969	0.023	0.057	65.1	0.02	0.02	0.02	-0.05
	550	Optimized (1495)	0.936	1.060	0.035	0.071	48.4	0.05	0.04	0.06	0.04
		HP (1551)	0.940	1.083	0.036	0.074	46.4	0.05	0.04	0.07	0.11
		Models (2064)	0.950	0.960	0.019	0.050	70.3	0.01	0.01	0.01	-0.05
	565	Optimized (1495)	0.939	1.090	0.033	0.072	48.5	0.05	0.04	0.07	0.05
		HP (1551)	0.943	1.105	0.033	0.074	46.7	0.05	0.04	0.07	0.12
		Models (2064)	0.950	0.939	0.020	0.048	71.2	0.01	0.01	0.00	-0.07
	670	Optimized (1495)	0.936	1.071	0.030	0.064	55.8	0.04	0.04	0.06	0.02
		HP (1551)	0.943	1.099	0.032	0.068	50.9	0.05	0.04	0.07	0.11
		Models (2064)	0.951	0.876	0.021	0.043	77.3	0.00	0.01	-0.02	-0.13
	865	Optimized (1495)	0.931	1.077	0.020	0.053	66.0	0.03	0.03	0.05	0.15
		HP (1551)	0.942	1.129	0.024	0.060	58.3	0.04	0.03	0.06	0.17
		Models (2064)	0.955	0.852	0.015	0.038	82.1	0.00	0.00	-0.03	-0.13
	1020	Optimized (1431)	0.927	1.063	0.017	0.049	71.3	0.02	0.02	0.04	0.15
		HP (1501)	0 940	1 143	0.021	0.058	60.0	0.04	0.03	0.07	0.18
		III (15017	0.510	1.145	0.021	0.056	00.9	0.04	0.05	0.07	0.10

Table 1: Global statistics of PARASOL/GRASP spectral AOD vs. AERONET AOD over land and ocean. The best performing of three approaches by each metric is labelled in bold (adapted from Chen et al., 2020).

As a result, GRASP/Components (same as RemoTAP) algorithm was significantly improved during the HARPOL project. Additionally, further improvement of GRASP/Components were done within CAMEO studies. It should be noted that the most advanced POLDER/RemoTAP approach uses rather similar aerosol modeling concept to one of GRASP/components. Specifically, GRASP uses a somewhat slightly optimized GRASP/Components approach compared to Li et al., (2019), and the RemoTAP approach also represents aerosol using several externally mixed aerosol components with predetermined complex refractive index while description of size distribution and other parameters of each component is somewhat different.

Figure 6 illustrates the validation results of the retrieved aerosol parameters by the latest global processing using GRASP/Components, that provided as a second data set in frame of this deliverable).

Figure 6: The results of validation of 1-year 2008 POLDER-3/Components latest global product provided as second 3MI/Proxy aerosol product.

It can be again emphasized here that POLDER validation statistics are rather convincing especially compared with conventional aerosol retrieval as those from single view imagers such as MODIS in particular for so-called detailed parameters (e.g., AE and AODF). In addition to the illustration of Fig.(5), Fig. (7) shows the global validation of MODIS AE and comparison with POLDER AE over land. One can see that POLDER AE shown is significantly more accurate than MODIS AE. This becomes evident in particular from the global pixel-to-pixel comparisons of MODIS AE to POLDER AE where it is made evident that MODIS AE is relying on the predetermined aerosol presumably regional aerosol models and doesn't capture local variation of AE.

Figure 7: AE products over land for 2008: From left to right: MODIS DT AE against AERONET; MODIS DB AE against AERONET, global comparison of MODIS DT AE against POLDER RemoTAP AE (adapted from Hasekamp et al., 2024).

The version of GRASP/Components retrieved updated with the finding from HAPRPOL studies and few more improvement was used for generation of POLDER/Components retrieval provided in this deliverable.

1.2.2 Aerosol composition information provided by 3MI Proxy retrievals based on aerosol assumption harmonized with CTMs.

As discussed in previous section the concept of GRASP/Components approach seems to be very useful for optimizing scope and accuracy of aerosol optical properties (AOD, AODF, AODC, SSA and AAOD). At the same time, the initial idea of this approach was related mostly with a possibility to provide directly some information about aerosol composition. Indeed, the GRASP/components approach retrieves the size resolved fractions of aerosol components representing the different species, such as black carbon, brown carbon, fine/coarse mode non-absorbing soluble and insoluble, coarse mode absorbing and aerosol water (Li et al., 2019). For example, Fig.(8) illustrates the climatology of aerosol component columnar mass concentration derived from POLDER-3 over the East Asia region by the GRASP/Components algorithm (Li et al., 2020b).

Figure 8: Climatology of aerosol component columnar mass concentration derived from POLDER-3 over East-Asia by the GRASP/Components approach: (a) fine mode black carbon, (b) fine mode brown carbon, (c) coarse mode mineral dust.

While, the validation and analysis of aerosol composition retrieval is very complex and conceptually not evident, qualitative agreement of compositional spatial patterns has been be

clearly recognized (e.g., Li et al. 2020a, 2020b). For example, Fig. (9) illustrates impressive qualitative agreement of the BC mass concentration retrieval by POLDER/Components with simulation of GOCART model (Chin et al, 2002). Therefore, taking into consideration both high accuracy of aerosol optical properties provided by "Components approach" and frequent qualitative of retrieved aerosol composition spatial patent with the expectations, this approach can be considered as very promising approach for both future evolution of aerosol remote sensing and the efforts on harmonizing remote sensing approaches with those of CTMs.

Figure 8: Black Carbon mass concentration(mg/m²) in January 2008: retrieved by GRASP/Components approach (left), simulated by GOCART model.

Thus, the MAP aerosol products that generated using GRASP/Components approach provides to the user the wealth of information about aerosol. The provided data should give to the potential user an example of the extended aerosol product that is planned to be available from 3MI/EPS-SG products. Specifically, the users can:

- (i) analyze the detailed aerosol optical properties including spectral AOD, AODF, AODC, SSA, AAOD, etc. There properties are available from both provided data sets POLDER/Models and POLDER/Components. At the same time, the second data set should provide more accurate and consistent product (as was discussed above).
- (ii) analyze, in addition, suggested composition distribution of aerosol: such as black carbon, brown carbon, fine/coarse mode non-absorbing soluble and insoluble, coarse mode absorbing and aerosol water. This additional information is expected to be useful for assimilation and constraining the CTM, specifically CAMS.

Figures 9 and 10 illustrate the above statements. Namely, Figure 9 shows the global maps of 2008 mean AOD, AE, AODF and AODC at 565 nm. As one can see that the maps of AE, AODF and AODC provide rather clear geographical patterns distribution of fine and coarse particle aerosol that should be helpful for diverse user applications. It can be seen that globally coarse AODC and aerosol with low AE are associated with desert dust, while the out brakes of AODF and aerosol with high AE are related with biomass burning events and urban pollution. These maps of the detailed optical characteristics were plotted using second data set (POLDER/Components), while the first data set (POLDER/Models) also include them (whole some of the parameter: AE, AODF and AODC somewhat less accurate).

Figure 9: The global maps of 2008 mean AOD AE, AODF and AODC at 565 nm generated as part of Level 3, 0.1 degree resolution POLDER/Component aerosol product.

In a contrast, Figure 10 illustrates the information that available only in the POLDER/Components data set. Figure 10 displays AAOD at 443nm together with mass concentrations of main aerosol fine mode absorbers BC and BrC and Iron Oxide that determines the level of absorption of desert dust. This provide very interesting observation of aerosol absorption origins. It can be clearly seen from the maps that in general BC has strong presence in African biomass burning and also has presence in smoke events over Canada and Russia and urban pollution. According to the maps, the BrC is probably dominant absorber in Canadian and Russia fire smoke and significant presence in urban polluted areas and in African smoke. Certainly, there data are only one of the first data set providing information about aerosol composition from satellite observations and the accuracy and even overall validity of this product needs to be verified and improved in the future.

Figure 10: The global maps of 2008 mean AAOD (443), the mass concentrations (kg/m²) of main aerosol absorbers fine mode BC and BrC and coarse mode Iron Oxide generated as part of Level 3, 0.1 degree resolution POLDER/Component aerosol product.

1.2.3 The advances in retrieval of aerosol composition information from multiangular polarimetric observation (3MI proxy retrieval)

As already mentioned, the delivered 3MI Proxy POLDER/Components aerosol product (second delivered data set) doesn't represent the latest configuration of aerosol modelling concept developed in CAMEO project. Since the global processing of POLDER data takes significant efforts and computational resource, this delivery includes one of intermediate POLDER/Components version that allow more accurate, compared to initial POLDER products, retrieval of optical properties and provide aerosol retrieval product that has rather harmonious concept with that of CTM and CAMS specifically. At the same time, there are significant effort in frame of CAMEO project on further harmonization of aerosol remote sensing retrievals with CAMS. These efforts are described in details in D1.4 document by Litvinov et al., (2024) and summarized in Table 2.

	Feasibility tests	Performance in AOD	Performance in SSA	Performance in AE
1	Volume mixture	Same quality	Same quality	Same quality
2	SU in separate mode	Decreased	Improved	Decreased
3	Sea Salt and Dust in separates modes	Same quality	Improved	Improved
4	Hydrophobic BC and BrC in the separate modes	Decreased	Improved	Decreased

	Feasibility tests	Performance in AOD	Performance in SSA	Performance in AE
5	Adjustment of the complex refractive index of aerosol chemical components	Same quality	Same quality	Same quality

Table 2. Feasibility tests summary (adapted from Table 5.1 of D1.4, Litvinov et al., 2024)

Once of the overall conclusion of all these tests will be achieved, the global processing of POLDER data can be realized and the aerosol product can be built with the most advanced retrieval configuration. Nonetheless, in order to provide interested user some inside of possible improvement, we added this third data set in as part of delivered data, because that includes the retrieval of the presently the best POLDER/Components configuration (see Table 2) that, in difference with previous version of the Components approach considers Sea Salt and Dust in separates externally mixed modes. The data set provides the data globally over AERONET site (see details in D1.4, Litvinov et al., 2024).

2 Data sets and formats

The delivered data archive includes three data sets:

- (1) The first data set includes POLDER-3/GRASP aerosol product generated using POLDER-3/Models (e.g., Chen et al., 2020, Dubovik et al., 2021). This product includes comprehensive set of aerosol optical properties. It also includes parameters of BRDF and BPRDF describing surface reflectance properties. The complete list of parameters is listed the Section 5.1 of the Annex. This is a global data set, for a year 2008.
- (2) The second data set includes POLDER-3/GRASP aerosol product generated using POLDER-3/Components (e.g., Lei et al., 2019, Dubovik et al., 2021). This product includes comprehensive set of aerosol optical properties and surface reflectance properties. In addition, this data set includes the parameters charactering aerosol components that, as discussed in D1.4 (Litvinov et al., 2024), provide information in aerosol composition in manner aligned to CTM and especially to CAMS. The complete list of parameters is listed in the Section 5.2 of the Annex. This is a global data set, for a year 2008.
- (3) The third data set includes POLDER-3/GRASP aerosol product generated using GRASP/Components with the latest version of aerosol model representation that discussed in D.1.4 (Litvinov, et al., 2024). In difference with second data set, this processing provided two externally mixed aerosol modes: fine mode, coarse desert dust, and coarse sea salt. In This approach, in a contrast with previous retrieve different size distributions for desert dust and sea salt aerosol coarse modes of aerosol. In a contrast to the two first data sets, this data sat is only over AERONET sites, for a year 2008.

cameo								
Search	×	Go		Prev	1	$\hat{}$	of 1	Next
2008_All_AERONET_3modes_separated_Dust_and_SeaSalt/ 1969-12-31 23:59:59								
components_v2/						20	24-07-09 12:2	26:16
polder_models/	,					20	24-07-09 11:1	11:26
polder_models/	1			_		20	024-07-09 11:1	11:26

Figure 11: The illustration of delivered data sets at the website.

Download of GRASP products is available via the current Products page:

https://download.grasp-sas.com/download/cameo/

Figure 11 shows the presentation of delivered data sets at the website. There are two options of download:

• Interactively via the website and the normal GRASP Single-Sign-On (click the 'Download' button above).

• Once you try to "**Sign-In**" for the first time, you will be asked to register by providing basic information. Please, register, this takes just a few moments. Once approved by the server security (this is just a formality), the assess will be granted to the data sets.

• Using HTTPS Basic Authentication for downloading data in a batch script (useful for big number of files). Click 'Download' above, the *wget* command appears in the bottom of the webpage. When a new directory is accessed, the *wget* command will be automatically updated to download all the data files that fall under this directory.

2.1 The description of archive organizations

The first and the second data archives have rather comprehensive data organization and representation that is designed for the convenience and in the interest of scientific data user, as illustrated by Fig.(12). The third data set includes only the data provided directly by the GRASP output. No additional optimization of the data set was provided since this archive represents only intermediate test results provided only over AERONET site as illustrated by Fig.(13). Once the new approach will be finalized and the global data set generated the data will be provide in the similar manner as it is done for two first data sets.

The first and the second data archives have the following structure, illustrated by Fig.(12):

Internal archives (not available in the download).

Level 1: GRASP output

Level 1: Internal. Tile output files. Level 1.5 internal: daily and not -filtered

The access to the internal archive could be provided under request. Please, <u>contact</u> <u>us</u> (<u>https://www.grasp-open.com/contact/</u>) for further information.

Public files provided in this deliverable:

Level 2: Data filtered at 6 km resolution, sinusoidal projection

- daily
- monthly
- seasonal
- yearly
- climatological:
 - o *monthly*
 - seasonal
 - o yearly

Level 3 : Regrid level 2

- 0.1 degree :
 - o daily
 - o monthly
 - o seasonal
 - o **yearly**
 - o climatological (averaged over all years of archive)
 - monthly
 - seasonal
 - yearly
- 1 degree :

0

- o **daily**
- o *monthly*
- seasonal
- o **yearly**
 - climatological:
 - monthly
 - seasonal
 - yearly.

Figure 12: The illustration of the first and second data archive organizations.

cameo > 2008_AII_AERONET_3modes_separa	ted_Dust	_and_	_SeaSalt	
	Dente			Neut
Search X Go	Prev	1	♀ of 24	Next
ATHENS-NOA.parasol_grasp.2008-01-03_2008-03-31.csv			2023-08-21 06	:00:30 229.0 KiE
ATHENS-NOA.parasol_grasp.2008-04-07_2008-07-02.csv			2023-08-19 22	:02:24 285.1 KiE
ATHENS-NOA.parasol_grasp.2008-07-04_2008-09-30.csv			2023-08-20 01	:29:30 493.1 KiE
ATHENS-NOA.parasol_grasp.2008-10-04_2008-12-25.csv			2023-08-18 16	:53:39 179.4 KiE
Abu_Al_Bukhoosh.parasol_grasp.2008-01-01_2008-03-31.cs	/		2023-08-18 16	:17:12 468.3 KiE
Abu_Al_Bukhoosh.parasol_grasp.2008-04-02_2008-07-02.cs	/		2023-08-20 00	35:48 603.6 KiE
Abu_Al_Bukhoosh.parasol_grasp.2008-07-04_2008-10-02.cs	/		2023-08-19 04	:34:13 687.8 KiE
Abu_Al_Bukhoosh.parasol_grasp.2008-10-04_2008-12-30.cs	/		2023-08-21 01	:44:10 471.6 KiE
Agoufou.parasol_grasp.2008-01-04_2008-03-31.csv			2023-08-21 03	:50:58 546.5 KiE
Agoufou.parasol_grasp.2008-04-03_2008-06-28.csv			2023-08-19 12	51:53 443.8 KiE
Agoufou.parasol_grasp.2008-07-03_2008-10-02.csv			2023-08-19 13	:59:17 378.0 KiE
Agoufou.parasol_grasp.2008-10-04_2008-12-28.csv			2023-08-18 15	:38:09 601.1 KiE
Alta_Floresta.parasol_grasp.2008-01-03_2008-03-09.csv			2023-08-18 17	:19:45 27.7 KiE
Alta_Floresta.parasol_grasp.2008-06-06_2008-06-27.csv			2023-08-19 20	:52:23 82.2 KiE
Alta_Floresta.parasol_grasp.2008-07-15_2008-09-24.csv			2023-08-20 12	:42:47 237.5 KiE
Alta_Floresta.parasol_grasp.2008-10-05_2008-12-09.csv			2023-08-18 20	:30:59 45.9 KiE
Ames.parasol_grasp.2008-03-10_2008-03-25.csv			2023-08-20 01	:07:56 60.7 Kil
Ames.parasol_grasp.2008-04-04_2008-07-01.csv			2023-08-18 20	21:40 316.8 Kil
Ames.parasol_grasp.2008-07-10_2008-09-29.csv			2023-08-18 22	:35:45 318.5 Kil
Ames.parasol_grasp.2008-10-03_2008-12-29.csv			2023-08-20 13	:20:30 260.5 KiE
Amsterdam_Island.parasol_grasp.2008-01-01_2008-04-01.cs	v		2023-08-20 07	:37:50 298.7 Kil
Amsterdam_Island.parasol_grasp.2008-04-03_2008-07-01.cs	v		2023-08-20 02	:35:39 168.2 KiE
Amsterdam_Island.parasol_grasp.2008-07-03_2008-10-01.cs	v		2023-08-19 22	:30:23 255.7 KiE
Amsterdam_Island.parasol_grasp.2008-10-03_2008-12-29.cs	v		2023-08-20 17	:54:25 274.0 KiE
Andenes.parasol_grasp.2008-03-18_2008-03-30.csv			2023-08-19 08	:12:44 80.5 KiE
Andenes.parasol_grasp.2008-04-02_2008-06-30.csv			2023-08-19 00	:01:01 524.5 Kil
Andenes.parasol_grasp.2008-07-04_2008-09-23.csv			2023-08-18 10	:48:52 402.4 Kil
Appledore_Island.parasol_grasp.2008-01-03_2008-03-30.csv			2023-08-18 19	:22:50 402.6 KiE
Appledore_Island.parasol_grasp.2008-04-03_2008-07-01.csv			2023-08-19 15	:35:03 410.9 KiE
Appledore_Island.parasol_grasp.2008-07-04_2008-09-27.csv			2023-08-18 19	:46:08 462.1 KiE
Appledore_Island.parasol_grasp.2008-10-03_2008-12-29.csv			2023-08-19 08	:51:47 412.6 KiE
Arcachon.parasol_grasp.2008-01-04_2008-03-31.csv			2023-08-19 05	:25:02 230.6 Kil
Arcachon.parasol_grasp.2008-04-04_2008-06-30.csv			2023-08-21 04	:08:25 285.1 Kil
Arcachon.parasol_grasp.2008-07-04_2008-09-29.csv			2023-08-18 12	50:23 314.9 Kil
Arcachon.parasol_grasp.2008-10-03_2008-12-22.csv			2023-08-20 01	:41:03 136.6 Kil
Arica.parasol_grasp.2008-01-02_2008-03-31.csv			2023-08-19 14	:25:23 436.1 KiE
Arica.parasol_grasp.2008-04-03_2008-07-01.csv			2023-08-18 11	:21:36 464.2 KiE
Arica.parasol_grasp.2008-07-03_2008-10-02.csv			2023-08-20 08	:58:52 459.2 KiE
Arica.parasol_grasp.2008-10-03_2008-12-28.csv			2023-08-20 08	:11:29 396.4 KiE
Ascension_Island.parasol_grasp.2008-01-01_2008-03-31.csv			2023-08-18 09	:59:52 338.2 KiE
Γ	Prev	1	♀ of 24	Next

Figure 13: The illustration of the third data archive organizations=.

2.2 The post-processing and data aggregation.

The raw results files from GRASP contain three months of data of small regions (162×162 pixels). For the convenience of the users, the daily global files were created as well as their aggregates in time and space. Only the most reliable and demanded data were exported for final public distribution. Data format of this public archives is NetCDF.

In order to assure higher quality of the data, some post-processing was applied in order to eliminate the low quality points resulted from cloud contamination, bad surface description near the coast, etc. It should be noted that the files include all parameters produced by retrieval, i.e. retrieved surface reflectance parameters are also included.

The post-processing screening follows these steps:

- First, from raw GRASP output we create global daily level 1 files.
- Pixels with AOD443 > 10 are removed.
- The coast is removed so all pixels with land percent between 1 and 99 are removed. Also, to guarantee a proper coast elimination, the first pixel into ocean and land is removed.
- We remove unphysical values like water surface model over land and the other way around.
- We apply a criteria over to screen bad pixels (retrieval error is high so we remove completely the pixel):
 - o ocean → (residual <= 0.13) # In case of "models" archive the threshold for residual is 0.3
 - \circ land :
 - If precondition ndvi < 0.1</p>
 - if (dhr670 >= 0.3) then

if

- (AOD670<1)
- then (residual <= 0.04) # In case of "models" archive the threshold for residual is 0.06
- else (residual <= 0.06) # In case of "models" archive the threshold for residual is 0.08
- (dhr670 < 0.3) -> (residual <= 0.07) # In case of "models" archive the threshold for residual is 0.09
- precondition 0.1 <= ndvi < 0.4</p>
 - (dhr670 >= 0.25) -> (residual <= 0.075) # In case of "models" archive the threshold for residual is 0.095
 - (dhr670 < 0.25) -> (residual <= 0.085) # In case of "models" archive the threshold for residual is 0.105
- precondition 0.4 <= ndvi < 0.6</p>
 - (residual <= 0.1) # In case of "models" archive the threshold for residual is 0.12
- precondition 0.6 <= ndvi < 1</p>
 - (residual <= 0.12) # In case of "models" archive the threshold for residual is 0.14
- Extra filter applied only to "models" archive: If any DHR value is missing or DHR(443) < 0, we remove entire pixel (usually snow contamination)
- The «components» archive is postprocessed using the same filtering criteria as for the «models» archive

The date passed all above filter files are stored under **level 1.5**. These data are not publicly available, but can be provided by a special request. This archive ensures good surface retrieval but quality of aerosol products is not guaranteed.

Then,

- the outliers are screened analyzing groups of 20x20 pixels and iteratively we remove the worst pixel (farther to the mean of AOD870) if the group does not fulfil the following condition "std of data <= 1.5 AND std / mean of data <= 0.5". If the result group has less than 60 pixels it is completely removed (noisy area probably due to cloud contamination).
- Some aerosol products can only be calculated when there is some aerosol loading (otherwise it is difficult to measure them). So, we apply extra filters. Angstrom Exponent is only provided if AOD560 is higher than 0.02 over ocean or 0.2 over land.

Other more complex products (SSA, Re(m), Im(m), AAOD, Size distribution, SphereFraction) are strongly filtered:

- land : AOD443 >= 0.3 and 0.65 <= SSA <= 1.
- \circ ocean : AOD443 >= 0.02 and 0.65 <= SSA <= 1.
- These results are exported as **level 2**. Level 2 is also temporally aggregated. The temporal aggregation pixels are removed if AOD443>4.

Level 3 is created as regridding products at 0.1 and 1 degrees resolution in WGS84 projection of data available in level 2. In the regridding process we applied median filter instead of average or any other sophisticated filter.

SSA For aggregation to 1 degree, the following strategy was used for the SSA: SSA(1 degree, Level 3)=Sum(SSA(0.1 degree Level 2)*TAU(0.1 degree Level 2)/(SumTAU(0.1 degree Level 2))

AAOD (1 degree, level 3) = Sum(AAOD(0.1 degree Level 2))/N, where N is a number of 0.1 degree Level 2 pixels used in the Sum.

In summary, the following data sets are prepared:
 Level 0: raw results from grasp
 Level 1: daily files from the output
 Level 1.5: data softly screened. All surface pixels are good but we cannot guarantee the quality of aerosol information
 Level 2: Full resolution data filtered and aggregations (daily, monthly, yearly, seasonal, and climatologically monthly, seasonal and full archive).
 Level 3: Regirded at 0.1 and 1 degree of level 2 (including temporal aggregations).

3 Summary

Thus, the purpose of this report is to introduce and describe the delivered 3MI Proxy aerosol retrieval data sets. The delivered product archive included the three data sets:

- A set of conventional aerosol optical product of 3MI Proxy observations (GRASP/Models);
- A set of advanced aerosol optical product of 3MI Proxy observations (GRASP/Components). This aerosol data set is an example of aerosol remote sensing aligned with aerosol assumptions used in chemical transport models (CTM);
- A set of improved advanced aerosol optical product of 3MI Proxy observations (GRASP/Components). This improved aerosol illustrative data set that generated using the latest development within CAMEO aimed to improve aligning of remote sensing products with chemical transport models (CTM) and CAMS specifically.

The report outlines the advantages of new extensive advanced aerosol products expected from MAP. It also discusses the potential of the aerosol products generated using remote sensing retrievals aligned with chemical transport models (CTM) and CAMS specifically. The report describes the organization of the provided data archives, the principles of their generation.

4 References

- Chen, C., O. Dubovik, D. Fuertes, P. Litvinov, T. Lapyonok, A. Lopatin, F. Ducos, Y. Derimian, M. Herman, D. Tanré, L. A. Remer, A. Lyapustin, A. M. Sayer, R. C. Levy, C. Hsu, J. Descloitres, L. Li, B. Torres, Y. Karol, M. Herrera, M. Herreras, M. Aspetsberger, M. Wanzenboeck, L. Bindreiter, D. Marth, A. Hangler, and C. Federspiel, Validation of GRASP algorithm product from POLDER/PARASOL data and assessment of multi-angular polarimetry potential for aerosol monitoring, Earth System Science Data, 12, 3573–3620, <u>https://doi.org/10.5194/essd-12-3573-2020</u>, 2020.
- Chin M., Ginoux P., Kinne S., Torres O., Holben B., Duncan B., Martin R., Logan J., Higurashi A., and Nakajima T. Tropospheric Aerosol Optical Thickness from the GOCART Model and Comparisons with Satellite and Sun Photometer Measurements. J. Atm. Sci., 59, 2002
- Dubovik, O., & King, M. D. (2000). A flexible inversion algorithm for retrieval of aerosol optical properties from Sun and sky radiance measurements. Journal of Geophysical Research: Atmospheres, 105(D16), 20673–20696. https://doi.org/10.1029/2000JD900282
- Dubovik, O. et al.: Accuracy assessments of aerosol optical properties retrieved from Aerosol Robotic Network (AERONET) Sun and sky radiance measurements, J. Geophys. Res., 105, 9791–9806, https://doi.org/10.1029/2000JD900040, 2000.
- Dubovik, O. et al.: Application of spheroid models to account for aerosol particle nonsphericity in remote sensing of desert dust, J. Geophys. Res.-Atmos., 111, D11208, https://doi.org/10.1029/2005JD006619, 2006.
- Dubovik, O. et al.: Statistically optimized inversion algorithm for enhanced retrieval of aerosol properties from spectral multi-angle polarimetric satellite observations, Atmos. Meas. Tech., 4, 975–1018, https://doi.org/10.5194/amt-4-975-2011, 2011.
- Dubovik, O. et al.: GRASP: a versatile algorithm for characterizing the atmosphere, SPIE: Newsroom, https://doi.org/10.1117/2.1201408.005558, 2014.
- Dubovik, O. et al.: Synergy of PARASOL and CALIOP observations using GRASP algorithm for enhanced aerosol characterisation. In AGU Fall Meeting Abstracts (Vol. 2019, pp. A23B-05), 2019.
- Dubovik, O. et al.: A comprehensive description of multi-term LSM for applying multiple a priori constraints in problems of atmospheric remote sensing: GRASP algorithm, concept, and applications, Front. Remote Sens., 2, 23, https://doi.org/10.3389/frsen.2021.706851, 2021.
- Hasekamp, O. P. et al.: Aerosol properties over the ocean from PARASOL multiangle photopolarimetric measurements, J. Geophys. Res. Atmos., 116, D14204, https://doi.org/10.1029/2010JD015469, 2011.
- Hasekamp, O., P. Litvinov, G., Fu, C., Chen, and O. Dubovik,: Algorithm evaluation for polar-imetric remote sensing of atmospheric aerosols, Atmos. Meas. Tech., 17, 1497–1525, 2024. <u>https://doi.org/10.5194/amt-17-1497-2024</u>.
- Fu, G. and Hasekamp, O.: Retrieval of aerosol microphysical and optical properties over land using a multimode approach, Atmos. Meas. Tech., 11, 6627-6650, https://doi.org/10.5194/amt-11-6627-2018, 2018.
- Li., L., O. Dubovik, Y. Derimian, G. L. Schuster, T. Lapyonok, P. Litvinov, F. Ducos, D. Fuertes, C. Chen, Z. Li, A. Lopatin, B. Torres and H. Che, "Retrieval of aerosol components directly from satellite and ground-based measurements", Atmos. Chem. Phys. 19, 13409–13443, <u>https://doi.org/10.5194/acp-19-13409-2019</u>, 2019.
- Li, J. et al.: Synergy of satellite- and ground-based aerosol optical depth measurements using an ensemble Kalman filter approach, J. Geophys. Res. Atmos., 125, e2019JD031884, 2020. https://doi.org/10.1029/2019JD031884, 2020a.

- Li, L. et al.: Retrievals of fine mode light-absorbing carbonaceous aerosols from POLDER/PARASOL observations over East and South Asia, Remote Sens. Environ., 247, 111913, 2020. https://doi.org/10.1016/j.rse.2020.111913, 2020b.
- Litvinov, P., O. Dubovik, C. Chen, M. Herrera, C. Matar, M. Herreras, and A. Lopatin, CAMEO, D1.4: "Report on aligning aerosol parameter retrievals", 2024.
- Zhang, X. et al.: Validation of the aerosol optical property products derived by the GRASP/Component approach from multi-angular polarimetric observations, Atmos. Res., 263, 105802, https://doi.org/10.1016/j.atmosres.2021.105802, 2021.

Document History

Version	Author(s)	Date	Changes
0.1	Oleg Dubovik, Pavel Litvinov, Milagros Herrera, Christian Matar, Marcos Herreras, Anton Lopatin	30/6/2024	Initial version
1.0	Oleg Dubovik, Pavel Litvinov, Milagros Herrera, Christian Matar, Marcos Herreras, Anton Lopatin	12/8/2024	Version 1 released after internal review
1.1	Oleg Dubovik	12/8/2024	Minor correction

Internal Review History

Internal Reviewers	Date	Comments
Johannes Flemming (ECMWF) and Yana Karol (GRASP)	July 2024	Minor comments

This publication reflects the views only of the author, and the Commission cannot be held responsible for any use which may be made of the information contained therein.

5 ANNEX

5.1 ANNEX-1: The list of the parameters provided in POLDER-3 GRASP/Models archive.

Parameter	Data Field in L1	Long Name
		Unix Time in seconds counted
datetime	Datetime	from 00h.00min00sec 01.01.1970
residual_relative_noise0	ResidualRelative_0	Relative Residual
residual_relative_noise1	ResidualRelative_1	
land_percent	LandPercentage	Percentage of Land
cloud_mask	CloudMask	
SizeDistrLogNormBin1_1	SizeDistrLogNormBin1_1	Aerosol model fraction (smoke)
SizeDistrLogNormBin2_1	SizeDistrLogNormBin2_1	Aerosol model fraction (urban)
SizeDistrLogNormBin3_1	SizeDistrLogNormBin3_1	Aerosol model fraction (oceanic)
SizeDistrLogNormBin1_2	SizeDistrLogNormBin1_2	Aerosol model fraction (dust)
		Aerosol model fraction (urban
SizeDistrLogNormBin2 2	SizeDistrLogNormBin2 2	polluted)
		Normalized Difference
ndvi	NDVI	Vegetation Index
SphereFraction	SphereFraction	Sphere Fraction
VertProfileHeight	VertProfileHeight	Mean height of Vertical profile
	Ross Li BRDF 443 isotropic p	Ross Li BRDF isotropic
LandBRDFRossLi443 1	arameter	parameter at 443 nm
	Ross Li BRDF 490 isotropic p	Ross Li BRDF isotropic
LandBRDFRossLi490 1	arameter	parameter at 490 nm
	Ross Li BRDF 565 isotropic p	Ross Li BRDF isotropic
LandBRDFRossLi565 1	arameter	parameter at 565 nm
	Ross Li BRDF 670 isotropic p	Ross Li BRDF isotropic
LandBRDFRossLi670 1	arameter	parameter at 670 nm
	Ross Li BRDF 865 isotropic p	Ross Li BRDF isotropic
LandBRDFRossLi865 1	arameter	parameter at 865 nm
	Ross Li BRDF 1020 isotropic	Ross Li BRDF isotropic
LandBRDFRossLi1020 1	parameter	parameter at 1020 nm
	Ross Li BRDF 443 volumetric	Ross Li BRDF normalised
LandBRDFRossLi443 2	parameter	volumetric parameter
	Ross Li BRDF 490 volumetric	Ross Li BRDF normalised
LandBRDFRossLi490 2	parameter	volumetric parameter
	Ross Li BRDF 565 volumetric	Ross Li BRDF normalised
LandBRDFRossLi565 2	parameter	volumetric parameter
	Ross Li BRDF 670 volumetric	Ross Li BRDF normalised
LandBRDFRossLi670 2	parameter	volumetric parameter
	Ross Li BRDF 865 volumetric	Ross Li BRDF normalised
LandBRDFRossLi865 2	parameter	volumetric parameter
	Ross Li BRDF 1020 volumetric	Ross Li BRDF normalised
LandBRDFRossLi1020 2	parameter	volumetric parameter
	Ross Li BRDF 443 geometric	Ross Li BRDF normalised
LandBRDFRossLi443 3	parameter	geometric parameter
	Ross Li BRDF 490 geometric	Ross Li BRDF normalised
LandBRDFRossLi490 3	parameter	geometric parameter
	Ross Li BRDF 565 geometric	Ross Li BRDF normalised
LandBRDFRossLi565 3	parameter	geometric parameter
	Ross Li BRDF 670 geometric	Ross Li BRDF normalised
LandBRDFRossLi670 3	parameter	geometric parameter
	Ross Li BRDF 865 geometric	Ross Li BRDF normalised
LandBRDFRossLi865 3	parameter	geometric parameter

	Ross Li BRDF 1020 geometric	Ross Li BRDF normalised
LandBRDFRossLi1020_3	_parameter	geometric parameter
LandBPDFMaignanBreon443	LandBPDFMaignanBreon443	
LandBPDFMaignanBreon490	LandBPDFMaignanBreon490	
LandBPDFMaignanBreon565	LandBPDFMaignanBreon565	
LandBPDFMaignanBreon670	LandBPDFMaignanBreon670	
LandBPDFMaignanBreon865	LandBPDFMaignanBreon865	
LandBPDFMaignanBreon1020	LandBPDFMaignanBreon1020	
	Cox_Munk_iso_BRM_443_first_	Surface albedo of water body at
WaterBRMCoxMunkIso443_1	parameter	443 nm
	Cox_Munk_iso_BRM_490_first_	Surface albedo of water body at
WaterBRMCoxMunkIso490_1	parameter	490 nm
	Cox_Munk_iso_BRM_565_first_	Surface albedo of water body at
WaterBRMCoxMunkIso565_1	parameter	565 nm
	Cox_Munk_iso_BRM_670_first_	Surface albedo of water body at
WaterBRMCoxMunkIso670_1	parameter	670 nm
	Cox_Munk_iso_BRM_865_first_	Surface albedo of water body at
WaterBRMCoxMunkIso865_1	parameter	865 nm
	Cox_Munk_iso_BRM_1020_first	Surface albedo of water body at
WaterBRMCoxMunkIso1020_1	_parameter	1020 nm
	Cox_Munk_iso_BRM_443_secon	Fraction of Fresnel reflection
WaterBRMCoxMunkIso443_2	d_parameter	contribution at 443nm
	Cox_Munk_iso_BRM_490_secon	Fraction of Fresnel reflection
WaterBRMCoxMunkIso490_2	d_parameter	contribution at 490nm
	Cox_Munk_iso_BRM_565_secon	Fraction of Fresnel reflection
WaterBRMCoxMunkIso565_2	d_parameter	contribution at 565nm
	Cox_Munk_iso_BRM_670_secon	Fraction of Fresnel reflection
WaterBRMCoxMunkIso670_2	d_parameter	contribution at 670nm
	Cox_Munk_iso_BRM_865_secon	Fraction of Fresnel reflection
WaterBRMCoxMunkIso865_2	d_parameter	contribution at 865nm
	Cox_Munk_iso_BRM_1020_seco	Fraction of Fresnel reflection
WaterBRMCoxMunkIso1020_2	nd_parameter	contribution at 1020nm
	Cox_Munk_iso_BRM_443_third	Mean square ocean surface slope
WaterBRMCoxMunkIso443_3	_parameter	at 443 nm
	Cox_Munk_iso_BRM_490_third	Mean square ocean surface slope
WaterBRMCoxMunkIso490_3	_parameter	at 490 nm
	Cox_Munk_iso_BRM_565_third	Mean square ocean surface slope
WaterBRMCoxMunkIso565_3	_parameter	at 565 nm
	Cox_Munk_iso_BRM_670_third	Mean square ocean surface slope
WaterBRMCoxMunkIso670_3	_parameter	at 670 nm
	Cox_Munk_iso_BRM_865_third	Mean square ocean surface slope
WaterBRMCoxMunkIso865_3	_parameter	at 865 nm
	Cox_Munk_iso_BRM_1020_thir	Mean square ocean surface slope
WaterBRMCoxMunkIso1020_3	d_parameter	at 1020 nm
		Angstrom Exponent (665nm-
AExp	AExp	865nm)
		Aerosol Optical Depth for 443
tau443	AOD443	nm
10.0		Aerosol Optical Depth for 490
tau490	AOD490	nm
	A OD5(5	Aerosol Optical Depth for 565
tausos	AUD365	nm
	4.00(70	Aerosol Optical Depth for 670
tauo / U	AUD6/U	nm
4.965	A OD965	Aerosol Optical Depth for 865
tau865	AUD865	nm
1000	4.001020	Aerosol Optical Depth for 1020
tau1020	AOD1020	nm

		Absorbing Aerosol Optical Depth
aaod443	AAOD443	for 443 nm
		Absorbing Aerosol Optical Depth
aaod490	AAOD490	for 490 nm
		Absorbing Aerosol Optical Depth
aaod565	AAOD565	for 565 nm
		Absorbing Aerosol Optical Depth
aaod670	AAOD670	for 670 nm
		Absorbing Aerosol Optical Depth
aaod865	AAOD865	for 865 nm
		Absorbing Aerosol Optical Depth
aaod1020	AAOD1020	for 1020 nm
tau443_0	AODF443	Fine mode AOD at 443 nm
tau443_1	AODC443	Coarse mode AOD at 443 nm
tau490_0	AODF490	Fine mode AOD at 490 nm
tau490_1	AODC490	Coarse mode AOD at 490 nm
tau565_0	AODF565	Fine mode AOD at 565 nm
tau565_1	AODC565	Coarse mode AOD at 565 nm
tau670_0	AODF670	Fine mode AOD at 670 nm
tau670_1	AODC670	Coarse mode AOD at 670 nm
tau865_0	AODF865	Fine mode AOD at 865 nm
tau865_1	AODC865	Coarse mode AOD at 865 nm
tau1020_0	AODF1020	Fine mode AOD at 1020 nm
tau1020_1	AODC1020	Coarse mode AOD at 1020 nm
		Single Scattering Albedo at 443
ssa443	SSA443	nm
		Single Scattering Albedo at 490
ssa490	SSA490	nm
		Single Scattering Albedo at 565
ssa565	SSA565	nm
		Single Scattering Albedo at 670
ssa670	SSA670	nm
		Single Scattering Albedo at 865
ssa865	SSA865	nm
		Single Scattering Albedo at 1020
ssa1020	SSA1020	nm
		Directional Hemispherical
salbedo443	DHR443	Reflectance at 443 nm
		Directional Hemispherical
salbedo490	DHR490	Reflectance at 490 nm
		Directional Hemispherical
salbedo565	DHR565	Reflectance at 565 nm
		Directional Hemispherical
salbedo670	DHR670	Reflectance at 670 nm
		Directional Hemispherical
salbedo865	DHR865	Reflectance at 865 nm
		Directional Hemispherical
salbedo1020	DHR1020	Reflectance at 1020 nm

Table 3: POLDER-3 GRASP/Models product specification.

5.2 ANNEX-2: The list of the parameters provided in POLDER-3 GRASP/Components archive.

The second se	D . E 111 11	x) X
Parameter	Data Field in L1	Long Name
		Unix Time in seconds
		counted from
datetime	Datetime	00h.00min00sec 01.01.1970
residual_relative_noise0	ResidualRelative_0	Relative Residual
residual_relative_noise1	ResidualRelative_1	
land_percent	LandPercentage	Percentage of Land
cloud_mask	CloudMask	
SizeDistrLogNormBin1_1	SizeDistrLogNormBin1_1	
SizeDistrLogNormBin2_1	SizeDistrLogNormBin2_1	
SizeDistrLogNormBin3 1	SizeDistrLogNormBin3 1	
SizeDistrLogNormBin1 2	SizeDistrLogNormBin1 2	
SizeDistrLogNormBin2 2	SizeDistrLogNormBin2 2	
		Normalized Difference
ndvi	NDVI	Vegetation Index
SphereFraction	SphereFraction	Sphere Fraction
		Mean height of Vertical
VertProfileHeight	VertProfileHeight	profile
	Ross Li BRDE 443 isotronic parame	Poss Li BPDE isotropic
LandBRDERossLi443_1	tor	norse Li BKDI ⁻ isoliopic
	Poss Li PPDE 400 isotronic parama	Poss Li PPDE isotropia
LandPDDEDags1;400_1	tor	Ross LI BRDF Isoliopic
	Dass Li DDDE 565 isotronia noroma	Desa Li DDDE isotronia
Land DDDED and 565 1	KOSS_LI_BKDF_303_ISOUROPIC_parame	Ross LI BRDF Isotropic
	Dese Li DDDE (70 issternis normal	
LandPRDEPageL:670_1	Koss_L1_BKDF_0/0_isotropic_parame	Ross Li BRDF isotropic
		parameter at 670 nm
LandDDDEDaarL 965 1	Koss_L1_BKDF_805_isotropic_parame	Ross Li BRDF isotropic
		parameter at 865 nm
	Ross_L1_BRDF_1020_1sotropic_para	Ross Li BRDF isotropic
LandBRDFRossL11020_1	meter	parameter at 1020 nm
	Ross_L1_BRDF_443_volumetric_para	Ross Li BRDF normalised
LandBRDFRossL1443_2	meter	volumetric parameter
	Ross_L1_BRDF_490_volumetric_para	Ross L1 BRDF normalised
LandBRDFRossL1490_2	meter	volumetric parameter
	Ross_Li_BRDF_565_volumetric_para	Ross Li BRDF normalised
LandBRDFRossLi565_2	meter	volumetric parameter
	Ross_Li_BRDF_670_volumetric_para	Ross Li BRDF normalised
LandBRDFRossLi670_2	meter	volumetric parameter
	Ross_Li_BRDF_865_volumetric_para	Ross Li BRDF normalised
LandBRDFRossLi865_2	meter	volumetric parameter
	Ross_Li_BRDF_1020_volumetric_par	Ross Li BRDF normalised
LandBRDFRossLi1020_2	ameter	volumetric parameter
	Ross_Li_BRDF_443_geometric_para	Ross Li BRDF normalised
LandBRDFRossLi443_3	meter	geometric parameter
	Ross_Li_BRDF_490_geometric_para	Ross Li BRDF normalised
LandBRDFRossLi490_3	meter	geometric parameter
	Ross_Li_BRDF_565_geometric_para	Ross Li BRDF normalised
LandBRDFRossLi565_3	meter	geometric parameter
	Ross_Li_BRDF_670_geometric_para	Ross Li BRDF normalised
LandBRDFRossLi670_3	meter	geometric parameter
	Ross_Li_BRDF_865_geometric_para	Ross Li BRDF normalised
LandBRDFRossLi865_3	meter	geometric parameter
_	Ross_Li_BRDF_1020_geometric_para	Ross Li BRDF normalised
LandBRDFRossLi1020_3	meter	geometric parameter

LandBPDFMaignanBreon/43	LandBPDFMaignanBreon/1/3	
LandBPDFMaignanBreon/90	LandBPDFMaignanBreon/90	
LandBPDFMaignanBreon565	LandBPDFMaignanBreon565	
LandBPDFMaignanBreon670	LandBIDI MarginanBreon670	
LandBIDFMaignanBreon865	LandBPDFMaignanBreon865	
LandBDFMaignanBroon1020	LandBDDFMaignanBroon1020	
	Cox Munk ico PDM 442 first poro	Surface albedo of water
Water PDMCov Munk Loo 442 1	COX_MUNK_ISO_DRM_445_HISt_para	body at 442 nm
water DKWCOXWIUIKIS0445_1	Cox Munk ice DDM 400 first nore	Surface albedo of water
Water DDMCov Murtilia 400 1	COX_WINK_ISO_BRW1_490_HISt_para	body at 400 pm
waterBRMC0XMunkis0490_1	Can Municipa DDM 565 first north	Surface all a de of sustan
Water DDMCov Murth Loo 565 1	COX_MUNK_ISO_BRIM_565_IIFSt_para	Surface albedo of water
	Cox Municipa DDM 670 first para	Surface albede of water
Water PDMCov Munk Loo 670 1	COX_MUNK_ISO_BRM_070_IIISt_para	body at 670 pm
	Con Munh ing DDM 965 first nore	Surface alle de of mater
Water DDMC on March Loo 965 1	COX_MUNK_ISO_BRIM_805_HISt_para	Surface albedo of water
	meter	body at 865 nm
Water DDMC on March Log 1020 1	Cox_Munk_iso_BRM_1020_first_para	Surface albedo of water
waterBRMCoxMunkIso1020_1	meter	body at 1020 nm
	C	Fraction of Freshel
Weter DDMC - March 1 - 442-2	Cox_Munk_1so_BRM_443_second_pa	reflection contribution at
waterBRMCoxMunkIso443_2	rameter	443nm
		Fraction of Fresnel
Weter DDMC - March La 400, 2	Cox_Munk_1so_BRM_490_second_pa	reflection contribution at
WaterBRMCoxMunkIso490_2	rameter	490nm
		Fraction of Fresnel
	Cox_Munk_1so_BRM_565_second_pa	reflection contribution at
WaterBRMCoxMunkIso565_2	rameter	565nm
		Fraction of Fresnel
Weter DDMC - March 1 - (70. 2	Cox_Munk_iso_BRM_6/0_second_pa	reflection contribution at
waterBRMCoxMunkIso670_2	rameter	670nm
		Fraction of Fresnel
Water DDMComMarch Loog 65, 2	Cox_Munk_iso_BRM_865_second_pa	reflection contribution at
waterBRMC0XMunkIs0805_2	rameter	
	Can Munh ing DDM 1020 mand n	Fraction of Freshel
Water DDMC and March Log 1020 2	Cox_Munk_iso_BRM_1020_second_p	1020mm
waterBRMC0XMunkiso1020_2	Can Municipal DDM 442 third name	1020IIII
Water DDMCov Murtha 242 2	COX_MUNK_ISO_BRIM_445_third_para	slope et 442 pm
waterBRMC0XMullKIs0445_5	Ineter	slope at 445 mm
Water DDMC and March Lag 400, 2	Cox_Munk_iso_BRM_490_third_para	Mean square ocean surface
waterBRMC0XMunk1s0490_5	Can Murch inc. DDM 565 third name	slope at 490 lill
Water DDMCov Murth Loo 565 2	COX_WINK_ISO_BRWI_505_UII/U_para	slope et 565 pm
waterBRMC0XMunkis0305_5	Can Municipal DDM (70 thind none)	
Water BBMCox Munk Loo 670 2	meter	slope at 670 pm
water BRINCOXWIUNKIS0070_5	Cox Munk ice DDM 965 third none	Maan aquara aaaan aurfaaa
Watar DDMC or Muni-Lage 65 2	water	slope at 865 nm
waterBRMC0XMunkIs0805_5	meter	slope at 865 nm
Water DDMC and March Log 1020 2	Cox_Munk_iso_BRM_1020_tnird_par	Nean square ocean surface
waterBRMCoxMunkIso1020_3	ameter	Slope at 1020 nm
SC 1 1 1 1442 0	D = 1D = 0 = 1E442	Fine mode RealRefind at
reff_index_real443_0	KealKefIndF443	443 nm
roff index real442 1	DealDefIndC442	Loarse mode RealRefind at
rent_index_real443_1	KealKellndU443	H45 mm
auff in the mail 100 0	DealDefferdE400	Fine mode RealRefind at
re11_1ndex_rea1490_0	KeaiKeiindF490	490 nm
auff in the average 1400 - 1	DealDefferdC400	Loarse mode RealRefInd at
reif_index_real490_1	KealKellndU490	490 nm
	$D = 1D = 5L_{\rm eff} + 1D 5 < 5$	Fine mode RealRefind at
I share the state of a set of the	L KANIKATINGHA6A	מת בסב ו

		Coarse mode RealRefInd at
reff_index_real565_1	RealRefIndC565	565 nm
roff index real670 0	PaulPatIndE670	Fine mode RealRefind at
	KealKermdr070	Coarse mode RealRefInd at
reff index real670 1	RealRefIndC670	670 nm
		Fine mode RealRefInd at
reff_index_real865_0	RealRefIndF865	865 nm
		Coarse mode RealRefInd at
reff_index_real865_1	RealRefIndC865	865 nm
		Fine mode RealRefInd at
reff_index_real1020_0	RealRefIndF1020	1020 nm
roff index real1020 1	DealDefledC1020	Coarse mode RealRefind at
	RealRellindC1020	Fina mode ImagRefInd at
reff index imag443 0	ImagRefIndF443	443 nm
		Coarse mode ImagRefInd at
reff index imag443 1	ImagRefIndC443	443 nm
		Fine mode ImagRefInd at
reff_index_imag490_0	ImagRefIndF490	490 nm
		Coarse mode ImagRefInd at
reff_index_imag490_1	ImagRefIndC490	490 nm
		Fine mode ImagRefInd at
reff_index_imag565_0	ImagRefIndF565	565 nm
		Coarse mode ImagRefInd at
reff_index_imag565_1	ImagRefIndC565	565 nm Eine mode ImagDefind et
reff index imag670 0	ImagRefIndE670	670 pm
		Coarse mode ImagRefInd at
reff index imag670 1	ImagRefIndC670	670 nm
		Fine mode ImagRefInd at
reff_index_imag865_0	ImagRefIndF865	865 nm
		Coarse mode ImagRefInd at
reff_index_imag865_1	ImagRefIndC865	865 nm
		Fine mode ImagRefInd at
reff_index_imag1020_0	ImagRefIndF1020	1020 nm
roff index imag1020 1	Imag Dafle dC1020	Coarse mode ImagRefInd at
	ImagRennidC1020	1020 IIII Angstrom Exponent
AExp	AExp	(665nm-865nm)
		Aerosol Optical Depth for
tau443	AOD443	443 nm
		Aerosol Optical Depth for
tau490	AOD490	490 nm
		Aerosol Optical Depth for
tau565	AOD565	565 nm
		Aerosol Optical Depth for
tau670	AOD670	6/0 nm
to:: 965	A OD%65	Aerosol Optical Depth for
	AOD803	Aarosal Optical Dapth for
tau1020	AOD1020	1020 nm
		Absorbing Aerosol Ontical
aaod443	AAOD443	Depth for 443 nm
		Absorbing Aerosol Optical
aaod490	AAOD490	Depth for 490 nm
		Absorbing Aerosol Optical
aaod565	AAOD565	Depth for 565 nm

		Absorbing Aerosol Optical
aaod670	AAOD670	Depth for 670 nm
		Absorbing Aerosol Optical
aaod865	AAOD865	Depth for 865 nm
		Absorbing Aerosol Optical
aaod1020	AAOD1020	Depth for 1020 nm
tau443_0	AODF443	Fine mode AOD at 443 nm
		Coarse mode AOD at 443
tau/13_1	AODC443	nm
tau445_1	AODC443	Fina mode AOD at 400 nm
tau490_0	AODF490	Fille filode AOD at 490 filli
4. 400 1	10000100	Coarse mode AOD at 490
tau490_1	AODC490	
tau565_0	AODF565	Fine mode AOD at 565 nm
		Coarse mode AOD at 565
tau565_1	AODC565	nm
tau670_0	AODF670	Fine mode AOD at 670 nm
		Coarse mode AOD at 670
tau670_1	AODC670	nm
tau865_0	AODF865	Fine mode AOD at 865 nm
		Coarse mode AOD at 865
tau865 1	AODC865	nm
tau1020_0	AODF1020	Fine mode AOD at 1020 nm
		Coarse mode AOD at 1020
tau1020_1	AODC1020	nm
1441020_1	AODC1020	Single Secttoring Albedo et
000442	554442	Add nm
\$\$8445	55A445	
100	GGA 100	Single Scattering Albedo at
ssa490	SSA490	490 nm
		Single Scattering Albedo at
ssa565	SSA565	565 nm
		Single Scattering Albedo at
ssa670	SSA670	670 nm
		Single Scattering Albedo at
ssa865	SSA865	865 nm
		Single Scattering Albedo at
ssa1020	SSA1020	1020 nm
		Fine mode Single Scattering
ssa443 0	SSAF443	Albedo at 443 nm
		Coarse mode Single
		Scattering Albedo at 443
ssa443_1	SSAC443	nm
		Fine mode Single Scattering
ssa490_0	SSAF490	Albedo at 490 nm
<u> </u>		Coarse mode Single
		Scattering Albedo at 400
ssa400_1	SSAC400	nm
554470_1	55AC470	Fine mode Single Sectoria
		Fine mode Single Scattering
ssa505_0	55AF505	Albedo at 565 nm
		Coarse mode Single
		Scattering Albedo at 565
ssa565_1	SSAC565	nm
		Fine mode Single Scattering
ssa670_0	SSAF670	Albedo at 670 nm
		Coarse mode Single
		Scattering Albedo at 670
ssa670_1	SSAC670	nm
		Fine mode Single Scattering
ssa865 0	SSAF865	Albedo at 865 nm

		Coarse mode Single
		Scattering Albedo at 865
ssa865_1	SSAC865	nm
		Fine mode Single Scattering
ssa1020_0	SSAF1020	Albedo at 1020 nm
		Coarse mode Single
		Scattering Albedo at 1020
ssa1020 1	SSAC1020	nm
		Directional Hemispherical
salbedo443	DHR443	Reflectance at 443 nm
		Directional Hemispherical
salbedo490	DHR490	Reflectance at 490 nm
sabedo+90		Directional Hemispherical
salbada 565	DUD565	Difectional Heinspherical
salbed0303	DHK303	Direction of Henricehemical
11 1 670	DUD (70	Directional Hemispherical
salbedo670	DHR670	Reflectance at 6/0 nm
		Directional Hemispherical
salbedo865	DHR865	Reflectance at 865 nm
		Directional Hemispherical
salbedo1020	DHR1020	Reflectance at 1020 nm
		Aerosol Fine Mode Relative
chem_aer_relative_humidity_0	RH_F	Humidity
		Aerosol Coarse Mode
chem_aer_relative_humidity_1	RH_C	Relative Humidity
chem aer water fraction 0	Water Fraction F	Fine Mode Water Fraction
		Coarse Mode Water
chem aer water fraction 1	Water Fraction C	Fraction
chem aer soluble fraction 0	Soluble Fraction F	Fine Mode Soluble Fraction
enem_der_soldble_fidetion_0	Soluble_I fuetion_1	Coarse Mode Soluble
chem per soluble fraction 1	Soluble Fraction C	Evaluation Eraction
	Soluble_Plaction_C	Fine Mode Insoluble
show on inscluble function ()	Incoluble Exection E	Fine Wode Insoluble
		Fraction
		Coarse Mode Insoluble
chem_aer_insoluble_fraction_1	Insoluble_Fraction_C	Fraction
chem_aer_soot_fraction_0	Soot_Fraction_F	Fine Mode Soot Fraction
chem_aer_soot_fraction_1	Soot_Fraction_C	Coarse Mode Soot Fraction
chem_aer_iron_fraction_0	Iron_Fraction_F	Fine Mode Iron Fraction
chem_aer_iron_fraction_1	Iron_Fraction_C	Coarse Mode Iron Fraction
chem_aer_brc_fraction_0	BrC_Fraction_F	Fine Mode BrC Fraction
chem_aer_brc_fraction_1	BrC_Fraction_C	Coarse Mode BrC Fraction
chem aer water volume concentr		Fine Mode Water Volume
ation 0	Water Volume Concentration F	Concentration
chem aer soluble volume concent		Fine Mode Soluble Volume
ration 0	Soluble Volume Concentration F	Concentration
chem ser insoluble volume conce	Soluble_volume_concentration_1	Fine Mode Insoluble
ntration 0	Insoluble Volume Concentration F	Volume Concentration
cham par soot volume concentrat	Insoluble_volume_concentration_1	Fina Moda Soot Voluma
ion 0	Soot Volume Concentration E	Concentration
hom oor iron volume concentrati	Soot_volume_concentration_1	Eine Mode Iron Volume
chem_aer_fron_volume_concentrat	Les Vilas Constanting F	Fine wode from volume
	non_volume_Concentration_F	
cnem_aer_brc_volume_concentrati		Fine Mode BrC Volume
on_0	BrC_Volume_Concentration_F	Concentration
chem_aer_water_volume_concentr		Coarse Mode Water
ation_1	Water_Volume_Concentration_C	Volume Concentration
chem_aer_soluble_volume_concent		Coarse Mode Soluble
ration_1	Soluble_Volume_Concentration_C	Volume Concentration
chem_aer_insoluble_volume_conce		Coarse Mode Insoluble
ntration_1	Insoluble_Volume_Concentration_C	Volume Concentration

chem_aer_soot_volume_concentrat		Coarse Mode Soot Volume
ion_1	Soot_Volume_Concentration_C	Concentration
chem_aer_iron_volume_concentrati		Coarse Mode Iron Volume
on_1	Iron_Volume_Concentration_C	Concentration
aham aan hua waluma aanaantuati		
chem_aer_brc_volume_concentrati		Coarse Mode BrC Volume
on_1	BrC_Volume_Concentration_C	Coarse Mode BrC Volume Concentration

Table 4: POLDER GRASP/Components product specification.